cho tam giác ABC cân tại A. Đường trung tuyến của BE và CF cắt nhau tại G a) chứng minh tam giác BEA = tam giác CFA b) chứng minh tam giác GBC là tam giác đều c) chứng minh FE// BC d) chứng minh FE= 1/2BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pi ta go là cả định lý thuận và đảo, có thể viết định lý Pythagoras dưới dạng: Một tam giác có ba cạnh a, b và c, thì nó là tam giác vuông với góc vuông giữa a và b khi và chỉ khi a2 + b2 = c.
bình phương cạnh huyền bằng tổng bình phương hai cạnh góc vuông
( Hình ảnh chỉ mang tính chất minh họa )
a) Vì AD là tia phân giác của \(\widehat{A}\Rightarrow\widehat{BAD}=\widehat{CAD}=\frac{1}{2}.\widehat{A}=\frac{1}{2}.120^o=60^o\)
\(\Rightarrow\widehat{CAx}=\widehat{CAD}=60^o\)
Mà: AE nằm giữa AD và Ax nên AE là tia phân giác của \(\widehat{DAx}\)
Xét tam giác BAD có AE, BE, DE cắt nhau tại E. Mà AE, BE lần lượt là tia phân giác của góc ngoài tại đỉnh A và góc ABD
Nên: DE là tia phân giác của góc ngoài tại đỉnh D (t/c đường pg góc ngoài của tam giác ). Hay DE là tia phân giác của \(\widehat{ADC}\)
b) Chứng minh tương tự câu a, ta có : FD là tia phân giác của \(\widehat{ADB}\)
Vì FD, DE lần lượt là tia phân giác của hai góc kề bù: \(\widehat{ADB}\) và \(\widehat{ADC}\)
Nên \(FD\perp DE\) ( t/c đường phân giác 2 góc kề bù )\(\Rightarrow\widehat{EDF}=90^o\)
Vậy \(\Delta EDF\) vuông.