K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

<=>9*(a+b) ^2-(a+b) 

<=> (a+b) *(9*(a+b) -1)

<=> (a+b )*(9a+9b-1)

12 tháng 7 2018

\(A=4x^2-12x+11\)

\(A=4x^2-12x+9+2\)

\(A=\left(2x-3\right)^2+2\)

Nhận xét: \(\left(2x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x-3\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2x-3\right)^2=0\Rightarrow x=\frac{3}{2}\)

Vậy \(minA=2\Leftrightarrow x=\frac{3}{2}\)

12 tháng 7 2018
<=> 3n^3 +6n -2n^3 +2n^2- 2n^2 -7n <=> n^3-n <=> n(n^2-1) <=> n(n-1)(n+1) chia hết cho 6 vì là 3 số nguyên liên tiếp
12 tháng 7 2018

\(a^22\) là a2 nhân với 2 đó hả?

\(a,\left(a^22+2a+3\right)\left(a^22+2a-3\right)\)

\(=\left[\left(a^22+2a\right)+3\right]\left[\left(a^22+2a\right)-3\right]\)

\(=\left(a^22+2a\right)^2-9\)

\(=4a^4+8a^3+4a^2-9\)

\(b,\left(a^22+2a+3\right)\left(a^2-2a-3\right)\)

\(=2a^4-4a^3-6a^2+2a^3-4a^2-6a+3a^2-6a-9\)

\(=2a^4-2a^3-7a^2-12a-9\)

\(c,\left(a^22-2a+3\right)\left(a^2+2a-3\right)\)

\(=2a^4+4a^3-6a^2-2a^3-4a^2+6a+3a^2+6a-9\)

\(=2a^4+2a^3-7a^2+12a-9\)

12 tháng 7 2018

Ta có : x= 3-y-z

X2+y2+z2  <=> ( 3-y-z) 2+y2+z2

<=> 32+y2+z-6y-6z+2yz +z+y2         

<=>( y+ 2yz +z)+(z-6z+32)+(y2-6y+32)-9 

<=> ( y+z)2 +(z-3)2+(y-3)2-9

<=> ( y+z)2 +(z-x-y-z)^2 +(y-x-z-y)^2-9

<=> (y+z)^2 + (-x-y)^2 +( -x-z)^2-9 >= -9

<=> minn = -9 <=> x=y=z =0

Cậu xem thử như vậy có hợp lý không,  mình không chắc lắm