giải phương trình: \(\dfrac{4}{x+2}-\dfrac{1}{x}=\dfrac{x^2-2}{x^2+2x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/Xét tg vuông ABD và tg vuông ACE có \(\widehat{BAC}\) chung
=> tg ABD đồng dạng với tg ACE (g.g.g)
\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AC}{AB}\Rightarrow AE.AB=AD.AC\)
b/ Xét tứ giác BEDC có E và D cùng nhìn BC dưới 1 góc vuông
=> BEDC là tứ giác nội tiếp đường tròn đường kính BC
\(\Rightarrow\widehat{DEC}=\widehat{DBC}\) (góc nội tiếp cùng chắn cung DC) (1)
Ta có
\(\widehat{AED}+\widehat{EDC}=\widehat{AEC}=90^o\) (2)
Xét tg vuông BCD có
\(\widehat{ACB}+\widehat{DBC}=90^o\) (3)
Từ (1) (2) (3) \(\Rightarrow\widehat{AED}=\widehat{ACB}\)
c/ Xét tg vuông IKE có KI=KE => tg IKE là tg vuông cân tại K
\(\Rightarrow\widehat{IEK}=\widehat{EIK}=45^o\)
\(\Rightarrow\widehat{IEK}=\widehat{BEK}+\widehat{IEB}=45^o\) (1)
Xét tg vuông BEC có
\(\widehat{BEK}=\widehat{ECB}\) (cùng phụ với \(\widehat{EBC}\) ) (2)
Ta có I và E cùng nhìn MC dưới 1 góc vuông => tứ giác MIEC là tứ giác nội tiếp đường tròn đường kính MC
\(\Rightarrow\widehat{IEB}=\widehat{BCM}\) (góc nội tiếp cùng chắn cung IM) (3)
Từ (1) (2) (3) \(\Rightarrow\widehat{BEK}+\widehat{IEB}=\widehat{ECB}+\widehat{BCM}=\widehat{ECM}=45^o\)
Xét tg vuông EMC
\(\widehat{EMC}=90^o-\widehat{ECM}=90^o-45^o=45^o=\widehat{ECM}\)
=> tg EMC cân tại E => EM=EC
Lời giải:
$|3x-2|=7$
$\Rightarrow 3x-2=7$ hoặc $3x-2=-7$
$\Rightarrow x=3$ hoặc $x=\frac{-5}{3}$
Khi x > 9 thì 7 - x < 0 do đó |7-x| = x - 7
Khi đó M=4+2x+l7-xl = 4 + 2x + x- 7 = 3x -3
Vậy M = 3x - 3
#Toán lớp 8
\(\dfrac{4}{x+2}-\dfrac{1}{x}=\dfrac{x^2-2}{x^2+2x}\left(x\ne0;x\ne-2\right)\)
\(\Leftrightarrow\dfrac{4}{x+2}-\dfrac{1}{x}=\dfrac{x^2-2}{x\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{4x-\left(x+2\right)}{x\left(x+2\right)}=\dfrac{x^2-2}{x\left(x+2\right)}\)
\(\Rightarrow4x-\left(x+2\right)=x^2-2\)
\(\Leftrightarrow4x-x-x^2=2-2\)
\(\Leftrightarrow3x-x^2=0\)
\(\Leftrightarrow x\left(3-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=3\left(tm\right)\end{matrix}\right.\)