K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét hiệu a2+b2+c2+d2 -(a+b+c+d)

=a(a-10+b(b-1)+c(c-1)+d(d-1) \(⋮\)2

mà a2+b2+c2+d2 \(\ge\)0

=> a+b+c+d \(⋮\)2

hay a+b+c+d là hợp số

AH
Akai Haruma
Giáo viên
17 tháng 8 2021

Tham khảo lời giải tại đây:

https://hoc24.vn/cau-hoi/cho-abcd-la-cac-so-tu-nhien-thoa-man-doi-1-khac-nhau-va-a2d2b2c2tchung-minh-abcd-va-acbd-khong-the-dong-thoi-la-so-nguyen-to.1540844491932

19 tháng 8 2020

Sử dụng giả thiết \(a^2+b^2+c^2=3\), ta được: \(\frac{a^2b^2+7}{\left(a+b\right)^2}=\frac{a^2b^2+1+2\left(a^2+b^2+c^2\right)}{\left(a+b\right)^2}\)\(\ge\frac{2ab+2\left(a^2+b^2+c^2\right)}{\left(a+b\right)^2}=1+\frac{a^2+b^2+2c^2}{\left(a+b\right)^2}\)

Tương tự, ta được: \(\frac{b^2c^2+7}{\left(b+c\right)^2}\ge1+\frac{b^2+c^2+2a^2}{\left(b+c\right)^2}\)\(\frac{c^2a^2+7}{\left(c+a\right)^2}\ge1+\frac{c^2+a^2+2b^2}{\left(c+a\right)^2}\)

Ta quy bài toán về chứng minh bất đẳng thức: \(\frac{a^2+b^2+2c^2}{\left(a+b\right)^2}+\frac{b^2+c^2+2a^2}{\left(b+c\right)^2}+\frac{c^2+a^2+2b^2}{\left(c+a\right)^2}\ge3\)

Áp dụng bất đẳng thức Cauchy ta được \(\Sigma_{cyc}\frac{a^2+b^2+2c^2}{\left(a+b\right)^2}\ge3\sqrt[3]{\frac{\left(2a^2+b^2+c^2\right)\left(2b^2+c^2+a^2\right)\left(2c^2+a^2+b^2\right)}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}}\)

Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{\left(2a^2+b^2+c^2\right)\left(2b^2+c^2+a^2\right)\left(2c^2+a^2+b^2\right)}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}\ge1\)

Áp dụng bất đẳng thức quen thuộc \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)ta được: \(8\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)

Mặt khác ta lại có 

\(4\left(a^2+b^2\right)\left(b^2+c^2\right)\le\left(2b^2+c^2+a^2\right)^2\)(1) ; \(4\left(b^2+c^2\right)\left(c^2+a^2\right)\le\left(2c^2+a^2+b^2\right)^2\)(2);\(4\left(c^2+a^2\right)\left(a^2+b^2\right)\le\left(2a^2+b^2+c^2\right)^2\)(3) (Theo BĐT \(4xy\le\left(x+y\right)^2\))

Nhân theo vế 3 bất đẳng thức (1), (2), (3), ta được: \(64\left(a^2+b^2\right)^2\left(b^2+c^2\right)^2\left(c^2+a^2\right)^2\)\(\le\left(2a^2+b^2+c^2\right)^2\left(2b^2+c^2+a^2\right)^2\left(2c^2+a^2+b^2\right)^2\)

hay \(8\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\)\(\le\left(2a^2+b^2+c^2\right)\left(2b^2+c^2+a^2\right)\left(2c^2+a^2+b^2\right)\)

Từ đó dẫn đến \(\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)\(\le\left(2a^2+b^2+c^2\right)\left(2b^2+c^2+a^2\right)\left(2c^2+a^2+b^2\right)\)

Suy ra \(\frac{\left(2a^2+b^2+c^2\right)\left(2b^2+c^2+a^2\right)\left(2c^2+a^2+b^2\right)}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}\ge1\)

Vậy bất đẳng thức trên được chứng minh

Đẳng thức xảy ra khi a = b = c = 1

20 tháng 2 2018

\(\frac{2}{x+\frac{1}{1+\frac{x+1}{x+2}}}=\frac{6}{3x-1}\)

\(\frac{2}{x+\frac{1}{\frac{x+2+x+1}{x+2}}}=\frac{6}{3x-1}\)

\(\frac{2}{x+\frac{1}{\frac{2x+3}{x+2}}}=\frac{6}{3x-1}\)

\(\frac{2}{x+\frac{x+2}{2x+3}}=\frac{6}{3x-1}\)

\(\frac{2}{\frac{2x+3+x+2}{2x+3}}=\frac{6}{3x-1}\)

\(\frac{2}{\frac{3x+5}{2x+3}}=\frac{6}{3x-1}\)

\(\frac{4x+6}{3x+5}=\frac{6}{3x-1}\)

\(\Rightarrow\left(4x+6\right)\left(3x-1\right)=6\left(3x+5\right)\)

\(\Rightarrow12x^2-4x+18x-6=18x+30\)

\(\Rightarrow12x^2-4x+18x-18x=30+6\)

\(\Rightarrow12x^2-4x-36=0\)

\(\Rightarrow3x^2-x-9=0\)

\(\Rightarrow x^2-\frac{1}{3}x-3=0\)

\(\Rightarrow x^2-2.\frac{1}{6}x+\frac{1}{36}-\frac{1}{36}-3=0\)

\(\Rightarrow\left(x-\frac{1}{6}\right)^2-\frac{109}{36}=0\)

\(\Rightarrow\left(x-\frac{1}{6}-\frac{\sqrt{109}}{6}\right)\left(x-\frac{1}{6}+\frac{\sqrt{109}}{6}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{1+\sqrt{109}}{6}\\x=\frac{1-\sqrt{109}}{6}\end{cases}}\)

20 tháng 2 2018

làm lại nhé, chỗ kia quy đồng sai 

lần này làm theo cách khác

\(\frac{2}{x+\frac{1}{1+\frac{x+1}{x+2}}}=\frac{6}{3x-1}\)

\(\frac{2}{x+\frac{1}{\frac{x+2+x+1}{x+2}}}=\frac{2}{x-\frac{1}{3}}\)

\(\Rightarrow x+\frac{1}{\frac{2x+3}{x+2}}=x-\frac{1}{3}\)

\(\Rightarrow\frac{x+2}{2x+3}=\frac{-1}{3}\)

\(\Rightarrow\left(x+2\right).3=-1.\left(2x+3\right)\)

\(\Rightarrow3x+6=-2x-3\)

\(\Rightarrow3x+2x=-3-6\)

\(\Rightarrow5x=-9\)

\(\Rightarrow x=\frac{-9}{5}\)

vậy \(x=\frac{-9}{5}\)

20 tháng 2 2018

Gọi số đo 3 cạnh của tam giác đó là a,b,c ( c là cạnh huyền)

Theo bài ra ta có \(\hept{\begin{cases}c^2=a^2+b^2\\ab=2\left(a+b+c\right)\end{cases}}\)

Ta có 

c2=a2+b2(1)

=> c2=(a+b)2-2ab= (a+b)2-4(a+b+c)

=> c2=a2+b2+2ab-4a-4b-4c

=> c2+4c= a2+b2+2ab-4a-4b

<=> c2+4c+4=a2+b2+2ab-4a-4b+4

<=> (c+2)2=(a+b-2)2

Do a,b,c là số tự nhiên nên 

c+2=a+b-2 <=> c=a+b-4

Thay c=a+b-2 vào (1)  ta được

(a+b-4)2=a2+b2

<=> a2+b2+16-8a-8b+2ab=a2+b2

<=> 2ab-8a-8b=-16

<=> ab-4a-4b=-8

<=> ab-4a-4b+16=8

<=> a(b-4)-4(b-4)=8

<=> (b-4)(a-4)=8

Đến đây lập bảng xét ước là ra

20 tháng 2 2018

tổng 2 số là 16.26 . nếu gấp số thứ nhất lên 5 lần và gấp số thứ 2 lên 2 lần thì tổng mới là 43.2 .tìm 2 số

20 tháng 2 2018

Để \(Q\) nhỏ nhất =>  \(m;n\) nhỏ nhất

=>\(m^2+n^2\) nhỏ nhất

Mà \(m^2;n^2\ge0\) 

Suy ra để \(Q\) nhỏ nhất thì 

20 tháng 2 2018

\(m=n=0\) thay \(m=0;n=0\) vào \(Q\) đc kq

19 tháng 2 2018

cai dong thu 2 tu duoi len cua bài làm lại la (a2+b)(a2-b+1) nhé

19 tháng 2 2018

a4+a2+4=b2-b

=> a4-b2+a2-b=-4

=> (a2-b)(a2+b)+(a2-b)=-4

=> (a2-b)(a2+b+1)=-4

Do a,b thuoc Z nen den day lap bang xet  uoc la ra