Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{-5}{a-3}\left(a\inℤ\right)\) là số hữu tỷ \(\Leftrightarrow a-3\ne0\Leftrightarrow a\ne3\)
b) \(\dfrac{-5}{a-3}\left(a\inℤ\right)\) là số hữu tỷ dương \(\Leftrightarrow a-3< 0\Leftrightarrow a< 3\)
c) \(\dfrac{-5}{a-3}\left(a\inℤ\right)\) là số hữu âm \(\Leftrightarrow a-3>0\Leftrightarrow a>3\)
d) \(\dfrac{-5}{a-3}\left(a\inℤ\right)\) là số nguyên đương
\(\Leftrightarrow a-3\in B\left(5\right)=\left\{-1;-5\right\}\)
\(\Leftrightarrow a\in\left\{2;-2\right\}\)a/\(-\dfrac{4}{7}-x=\dfrac{3}{5}-2x\)
\(\Rightarrow-\dfrac{4}{7}-\dfrac{3}{5}=-2x+x\)
\(\Rightarrow-\dfrac{41}{35}=-x\)
\(\Rightarrow x=\dfrac{41}{35}\)
Vậy ...
b/\(\left(\dfrac{3}{8}-\dfrac{1}{5}\right)+\left(\dfrac{5}{8}-x\right)=\dfrac{1}{5}\)
\(\Rightarrow\left(\dfrac{3}{8}+\dfrac{5}{8}\right)-\dfrac{1}{5}-x=\dfrac{1}{5}\)
\(\Rightarrow1-\dfrac{1}{5}-x=\dfrac{1}{5}\)
\(\Rightarrow\dfrac{4}{5}-x=\dfrac{1}{5}\)
\(\Rightarrow x=\dfrac{3}{5}\)
Vậy ...
#kễnh
\(-\dfrac{4}{7}-x=\dfrac{3}{5}-2x\)
\(-\dfrac{4}{7}=\dfrac{2}{5}-2x+x\)
\(\dfrac{2}{5}-x=-\dfrac{4}{7}\)
\(x=\dfrac{2}{5}-\dfrac{-4}{7}\)
\(x=\dfrac{34}{35}\)
b) \(\left(\dfrac{3}{8}-\dfrac{1}{5}\right)+\left(\dfrac{5}{8}-x\right)=\dfrac{1}{5}\)
\(\dfrac{5}{8}-x=\dfrac{1}{5}-\dfrac{3}{8}+\dfrac{1}{5}\)
\(\dfrac{5}{8}-x=\dfrac{2}{5}-\dfrac{3}{8}\)
\(x=\dfrac{5}{8}-\dfrac{2}{5}+\dfrac{3}{8}\)
\(x=1-\dfrac{2}{5}=\dfrac{3}{5}\)
Diện tích xung quanh hình hộp chữ nhật là :
\(\left(2,5+1,8\right).2.2=17,2\left(đơn.vị.diện.tích\right)\)
Diện tích toàn phần hình hộp chữ nhật là :
\(17,2+2.2,5.1,8=26,2\left(đơn.vị.diện.tích\right)\)
Đáp số...
Bạn xem lại đề về chỗ dài và rộng nha.
Diện tích xung quanh hình hộp chữ nhật là :
\(2.\left(2,5+1,8\right).2=17,2\left(đvdt\right)\)
Diện tích 2 đáy hình hộp chữ nhật đó là :
\(2.2,5.1,8=9\left(đvdt\right)\)
Diện tích toàn phần hình hộp chữ nhật đó là :
\(17,2+9=26,2\left(đvdt\right)\)
Thể tích hình hộp chữ nhật đó là :
\(2,5.1,8.2=9\left(đvdt\right)\)
đs........
Từ gt của đề bài :
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{y+z+t}\text{=}\dfrac{y}{z+t+x}\text{=}\dfrac{z}{x+y+t}\text{=}\dfrac{t}{x+y+z}\text{=}\dfrac{x+y+z+t}{3.\left(x+y+z+t\right)}\left(\cdot\right)\)
Xét TH : \(x+y+z+t\text{=}0\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z\text{=}-\left(x+t\right)\\z+t\text{=}-\left(x+y\right)\\x+t\text{=}-\left(y+z\right)\end{matrix}\right.\)
Do đó : \(P\text{=}-1+-1+-1+-1\)
\(P\text{=}-4\in Z\)
TH : \(x+y+z+t\ne0\)
\(\Rightarrow\left(\cdot\right)\text{=}\dfrac{1}{3}\)
Do đó : \(\dfrac{x}{y+z+t}\text{=}\dfrac{1}{3}\Rightarrow3x\text{=}y+z+t\)
\(\Rightarrow4x\text{=}x+y+z+t\)
\(CMTT:\left\{{}\begin{matrix}4y\text{=}x+y+z+t\\4z\text{=}x+y+z+t\\4t\text{=}x+y+z+t\end{matrix}\right.\)
Mà : \(\dfrac{x}{y+z+t}\text{=}\dfrac{y}{x+z+t}\text{=}\dfrac{z}{x+y+t}\text{=}\dfrac{t}{x+y+z}\)
\(\Rightarrow4x\text{=}4y\text{=}4z\text{=}4t\)
\(\Rightarrow x\text{=}y\text{=}z\text{=}t\)
Do đó : \(P\text{=}4\in Z\)
\(\Rightarrowđpcm\)
Kham khảo :
https://olm.vn/cau-hoi/cho-cac-so-thuc-xyzt-thoa-mandfracxyztdfracyztxdfracztxydfractxyz-cmr-p-dfracxyztdfracyztx.8377111224063.
Bạn vuốt xuống dưới để xem đáp án nha.
8x - 1 )^2x + 1 = 5^2x + 1
8x - 1^2x + 1 = 5^2x + 1
⇒ 8x - 1 = 5
8x - 1 + 1 = 5 + 1 ( Cộng 1 vào cả 2 vế của phương trình )
8x = 5 + 1
8x = 6
⇒ 8x/8 = 6/8 ( Chia cả hai vế của phương trình cho cùng một số hạng )
⇒ x = 6/8
⇒ x = 3/4 ( rút gọn )
Vậy x = 3/4
\(\left\{{}\begin{matrix}y=-0,4x\\x=10z\end{matrix}\right.\)
\(\Rightarrow y=-0,4.10z=-4z\)
Nên y tỉ lệ thuận với z và có tỉ lệ là -4.