Tìm các số nguyên của x để các phân thức sau có giá trị nguyên
\(K=\frac{x^5+3x^3-x^2+3x-7}{x^2+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(2x+3\right)\left(2x-3\right)-\left(2x+1\right)^2\)
\(=4x^2-9-4x^2-4x-1\)
\(=-4x-10\)
\(=-2\left(2x+5\right)\)
b,Tương tự
\(x^2-2015x+2014=0\)
\(x^2-2014x-x+2014=0\)
\(x\left(x-2014\right)-\left(x-2014\right)=0\)
\(\left(x-2014\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2014=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2014\\x=1\end{cases}}}\)
\(x^2-2015x+2014\)\(=0\)
\(\Rightarrow x^2-x-2014x+2014\)\(=0\)
\(\Rightarrow x\left(x-1\right)-2014\left(x-1\right)\)\(=0\)
\(\Rightarrow\left(x-1\right)\left(x-2014\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-2014=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=2014\end{cases}}\)
\(2018x^2-2019x+1=0\)
\(2018x^2-2018x-x+1=0\)
\(2018x\left(x-1\right)-\left(x-1\right)=0\)
\(\left(x-1\right)\left(2018x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\2018x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2018}\end{cases}}}\)
chúc bạn học tốt !
chúc bạn học tốt !
chúc bạn học tốt !
chúc bạn học tốt !
\(\frac{144}{x+2}-\frac{100}{x}=-2\)
\(\frac{144x-100x-200}{x^2+2x}=-2\)
\(\frac{44x-200}{x^2+2x}=-2\)
\(-2x^2-4x=44x-200\)
\(-2x^2=48x-200\)
\(-2\left(x^2+24x-100\right)=0\)
\(x^2+2.12.x+144-244=0\)
\(\left(x+12\right)^2=244\)
\(\Rightarrow\hept{\begin{cases}x=\sqrt{244}-12\\x=-\sqrt{244}-12\end{cases}}\)
\(Takoco:\)
\(x\left(x+3\right)\left(x+1\right)\left(x+2\right)\)
\(=\left[\left(x\right)\left(x+3\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)\)
Đặt t=x2+3x
Mặt khác:
A cũng chỉ có thể có 1 hay 3 thừa số là số âm để *
A đạt Min
Mặt khác A cũng không thể là số âm vì
Nếu có:
Như * => tích có ths 0\(A=t.\left(t+2\right)\Rightarrow minA\Leftrightarrow t=0\Rightarrow A=0\)
\(A=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
\(A=\left[x\left(x+3\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]\)
\(A=\left(x^2+3x\right)\left(x^2+3x+2\right)\)
\(A=\left(x^2+3x+1-1\right)\left(x^2+3x+1+1\right)\)
\(A=\left(x^2+3x+1\right)^2-1^2\)
\(A=\left(x^2+3x+1\right)^2-1\ge-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x^2+3x+1=0\)
Vậy Amin = -1 <=> x2 + 3x + 1 = 0