K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2017

A C B H F G D E J

a) Do AB là tiếp tuyến của đường tròn tại B nên theo đúng định nghĩa, ta có \(OB\perp BA\Rightarrow\widehat{OBA}=90^o\)

Vậy tam giác ABO vuông tại B.

Xét tam giác vuông OAB, áp dụng định lý Pi-ta-go ta có : 

\(AB=\sqrt{OA^2-OB^2}=\sqrt{4R^2-R^2}=R\sqrt{3}\)

b) Ta có BC là dây cung, \(OH\perp BC\) 

Tam giác cân OBC có OH là đường cao nên nó cũng là tia phân giác góc COB.

Xét tam giác OCA và OBA có: 

OC = OB ( = R)

OA chung

\(\widehat{COA}=\widehat{BOA}\) (cmt)

\(\Rightarrow\Delta OCA=\Delta OBA\left(c-g-c\right)\)

\(\Rightarrow\widehat{OCA}=\widehat{OBA}=90^o\). Vậy CA là tiếp tuyến của đường tròn (O) tại C.

c) Ta có BC là dây cung, OH vuông góc BC nên theo tính chất đường kính dây cung ta có H là trung điểm BC.

Xét tam giác vuông OBA có BH là đường cao nên áp dụng hệ thức lượng trong tam giác ta có:

\(HB.OA=OB.BA\Rightarrow HB=\frac{R.R\sqrt{3}}{2R}=\frac{R\sqrt{3}}{2}\)

Vậy thì BC = 2HB = \(R\sqrt{3}\)

Do \(\Delta OCA=\Delta OBA\Rightarrow CA=BA\)

Xét tam giác ABC có \(AB=BC=CA=R\sqrt{3}\) nên nó là tam giác đều.

d) Gọi G là trung điểm của CA; J là giao điểm của AE và HD, F' là giao điểm của AE và OB

Ta cần chứng minh F' trùng F.

Dễ thấy HD // OB; HG // AB mà \(AB\perp OB\Rightarrow HD\perp GH\) hay D là tiếp tuyến của đường tròn tại H.

Từ đó ta có : \(\widehat{EHJ}=\widehat{EAJ}\)  

Vậy thì \(\Delta HEJ\sim\Delta AHJ\left(g-g\right)\Rightarrow\frac{EJ}{HJ}=\frac{HJ}{AJ}\Rightarrow HJ^2=EJ.AJ\)

Xét tam giác vuông JDA có DE là đường cao nên áp dụng hệ thức lượng trong tam giác ta có:

\(JD^2=JE.JA\)

Vậy nên HJ = JD.

Áp dụng định lý Ta let trong tam giác OAB ta có:

Do HD // OB nên \(\frac{HJ}{OF'}=\frac{JD}{F'B}\left(=\frac{AJ}{AF'}\right)\)

Mà HJ = JD nên OF' = F'B hay F' là trung điểm OB. Vậy F' trùng F.

Từ đó ta có A, E, F thẳng hàng.

21 tháng 11 2019

dài vậy 😅😅😅

13 tháng 12 2017

https://h oc 24 .vn/bg/batdangthucamgm/

12 tháng 12 2017

A lot of rice is grown in Mekong delta

mk đc giải nhất HSG Huyện môn Anh nên chắc chắn 100%

12 tháng 12 2017

A lot of rice are grown in Mekong delta

@_@

^^

12 tháng 12 2017

Áp dụng bất đẳng thức Cosi cho các số không âm, ta có:

\(\frac{x}{y}+\frac{y}{z}\ge2\sqrt{\frac{x}{z}}\)

\(\frac{y}{z}+\frac{z}{x}\ge2\sqrt{\frac{y}{x}}\)

\(\frac{x}{y}+\frac{z}{x}\ge2\sqrt{\frac{z}{y}}\)

công vế vs vế vs vế :\(2\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\ge2\left(\sqrt{\frac{x}{z}}+\sqrt{\frac{z}{y}}+\sqrt{\frac{y}{x}}\right)\)

\(\Leftrightarrow\sqrt{\frac{x}{z}}+\sqrt{\frac{z}{y}}+\sqrt{\frac{y}{z}}\le1\)

13 tháng 12 2017

Ta có \(x^2+6x+11=\left(x+6\right)\sqrt{x^2+11}\)

\(\Leftrightarrow\left(x^2+11\right)+6\left(x+6\right)-\left(x+6\right)\sqrt{x^2+11}-36=0\)

Đặt \(x^2+11=a;x+6=b\), ta có phương trình bậc hai:

\(a^2-ba+\left(6b-36\right)=0\)

\(\Delta=b^2-4\left(6b-36\right)=b^2-24b+144=\left(b-12\right)^2\)

TH1: \(a=\frac{b-12+b}{2}=b-6\)

\(\Leftrightarrow\sqrt{x^2+11}=x+6-6\Leftrightarrow x^2+11=x^2\Leftrightarrow11=0\)  (Vô lý)

TH2: \(a=\frac{12-b+b}{2}=6\)

\(\Leftrightarrow\sqrt{x^2+11}=6\Leftrightarrow x^2+11=36\Leftrightarrow x^2=25\Leftrightarrow\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)  

Vậy phương trình có nghiệm x = 5 hoặc x = -5.

12 tháng 12 2017

nhan 2 vs 2 ve r dua ve binh phuong ban nhe

12 tháng 12 2017

\(\sqrt{21-8\sqrt{5}}\)\(-\sqrt{21-4\sqrt{5}}\)

\(=\sqrt{16-2.4\sqrt{5}+5}\)\(-\sqrt{20-2\sqrt{20}+1}\)

\(=\sqrt{\left(4-\sqrt{5}\right)^2}\)\(-\sqrt{\left(\sqrt{20}-1\right)}\)

\(=4-\sqrt{5}-\left(\sqrt{20}-1\right)\)

\(=4-\sqrt{5}-\sqrt{20}+1\)

\(=5-\sqrt{5}-2\sqrt{5}\)

\(=5-3\sqrt{5}\)

12 tháng 12 2017

\(E=\frac{x^3}{x}+\frac{1000}{x}+\frac{1000}{x}\)

Áp dụng BĐT Côsi cho 3 số dương , ta có :

                          \(E\ge3\sqrt[3]{\frac{x^3\cdot1000\cdot1000}{x\cdot x\cdot x}}=3\cdot100=300\)

Dấu " = " xảy ra <=> \(x=10\)

P/S : Đây là bài cuối cùng trong đề thi hk kì 1 của mk hôm nay :)

12 tháng 12 2017

Cảm ơn bạn mai mình cũng bắt đầu thi môn toán

12 tháng 12 2017

\(x^4+\sqrt{x^2+2012}=2012.\)

\(\Leftrightarrow x^4=-\sqrt{x^2+2012}+2012.\)

\(\Leftrightarrow x^4+x^2+\frac{1}{4}=x^2+2012-\sqrt{x^2+2012}+\frac{1}{4}.\)

\(\Leftrightarrow\left(x^2+\frac{1}{2}\right)^2=\left(\sqrt{x^2+2012}-\frac{1}{2}\right)^2.\)

Đến đây chia 2 TH ra là ok

12 tháng 12 2017

thank nhé