Cho x và y là 2 số trái dấu. Chứng minh rằng: \(\frac{xy-x^2}{\sqrt{-\frac{x}{y}}}=\frac{xy-y^2}{\sqrt{-\frac{y}{x}}}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D
2
SS
26 tháng 1 2022
3a2+3b2=10ab
<=>3a2-10ab+3b2=0
<=>3a2-9ab-ab+3b2=0
<=>3a(a-3b)-b(a-3b)=0
<=>(3a-b)(a-3b)=0
<=>\(\hept{\begin{cases}3a-b=0\\a-3b=0\end{cases}\Leftrightarrow\hept{\begin{cases}3a=b\\a=3b\end{cases}}}\)
Có:a>b>0=>a=3b
Thay a=3b vào P ta đc:
P=\(\frac{a-b}{a+b}=\frac{3b-b}{3b+b}=\frac{2b}{4b}=\frac{1}{2}\)
ND
1
26 tháng 1 2022
bổ sung đề (d) cắt P(x) tại 2 điểm phân biệt nhé
Hoành độ giao điểm tm pt
\(-x^2=3x+4m-6\Leftrightarrow x^2+3x+4m-6=0\)
Để (d) cắt (P) tại 2 điểm nằm về 2 phía trục tung
\(\Leftrightarrow x_1x_2=4m-6< 0\Leftrightarrow m< \frac{3}{2}\)
26 tháng 1 2022
à dòng đầu mình nghĩ đề sai nên định bổ sung nhưng đề ko sai nên bạn coi ko có nhé do mình quên xóa
Vì x;y trái dấu => 2 trường hợp
TH1 y < 0 ; x > 0
TH2 x < 0 ; y > 0
Xét TH1 ta có : \(\frac{xy-x^2}{\sqrt{\frac{-x}{y}}}=\frac{-x\left(x-y\right)}{\sqrt{-\frac{x}{y}}}=\frac{-x\left(x-y\right)}{\sqrt{-\frac{1}{y}}.\sqrt{x}}=\frac{-\left(x-y\right)\sqrt{x}}{\sqrt{-\frac{1}{y}}}=-\left(x-y\right)\left(\sqrt{x.\left(-y\right)}\right)\) ;
\(\frac{xy-y^2}{\sqrt{-\frac{y}{x}}}=\frac{y\left(x-y\right)}{\sqrt{-y}.\sqrt{\frac{1}{x}}}=\frac{-\left(-y\right)\left(x-y\right)}{\sqrt{-y}.\sqrt{\frac{1}{x}}}=-\left(x-y\right)\left(\sqrt{x\left(-y\right)}\right)\)
=> ĐPCM
Xét TH2 ta được \(\frac{xy-x^2}{\sqrt{-\frac{x}{y}}}=\frac{-x\left(x-y\right)}{\sqrt{-x}.\sqrt{\frac{1}{y}}}=\left(x-y\right)\left(\sqrt{-xy}\right)\)
\(\frac{xy-y^2}{\sqrt{\frac{-y}{x}}}=\frac{y\left(x-y\right)}{\sqrt{\frac{1}{-x}}.\sqrt{y}}=\sqrt{-xy}\left(x-y\right)\)
=> ĐPCM