Cho B=\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{x}\left(1+2+3+...+x\right)\)
Tìm số nguyên dương x để B=115
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)Vì bảng ô vuông có kích thước 5x5 nên có tất cả:5 hàng,5 cột,2 đường chéo nên có tất cả 12 tổng.
Do khi điền vào các ô là các số 0,1,-1 nên mỗi tổng(S) là một số nguyên thỏa mãn:−5≤S≤5
\(⇒\)có 11 giá trị trong khi đó có 12 tổng nên theo nguyên lý Đi-rích-lê(hay còn gọi là chuồng thỏ) thì tồn tại ít nhất 2 tổng có giá trị bằng nhau.
a)Nếu p chẵn => p=2 => p^2 + 2^p = 2^2 + 2^2 =8 (loại)
Nếu p lẻ :
+) p\(⋮\)3 => p=3 => p^2 + 2^p =17 (thỏa)
+)p ko chia hết cho 3. Đặt p=3k\(\pm\)1
p^2=(3k\(\pm\)1)^2=9k^2 \(\pm\)6k+1=3(3k^2 \(\pm\)2k)+1 chia 3 dư 1
Còn: 2^p\(\equiv\)(-1)^p\(\equiv\)-1 (mod 3) do p lẻ
Do đó:p^2+2^p=1+(-1)=0 (mod 3)
Mà p^2 + 2^p >3 nên ko thể là số nguyên tố (loại)
Vậy p=3 thì 2^p + p^2 là snt
Ta có:
a) 0,(37) = 37.0,(0,1) = 37. 1/99 = 37/99
b) 1,2(54) = 1,2 + 0,0(54) = 1,2 + 5,4 . 0,(01) = 1,2 + 5,4.1/99 = 1,2 + 3/55 = 69/55
c) 15,0(123) = 15 + 0,0(123) = 15 + 12,3.0,(001) = 15 + 12,3. 1/999 = 15 + 41/3330 = 49991/3330
a)Ta có quy tắc sau: Muốn viết phần thập phân của số thập phan vô hạn tuần hoàn dưới dạng phân số, ta lấy chu kì làm tử, còn mẫu là một số gồm các chữ số 9, số chữ số 9 bằng số chữ số của chu kì. Do đó: số thập phân \(0,\left(37\right)=\frac{37}{99}\)
b)+c) Tai lại có quy tắc sau: Muốn viết phần thập phân của số thập phân vô hạn tuần hoàn tạp dưới dạng phân số, ta lấy số gồm phần bất thường và chu kì trừ đi phần bất thường làm tử,còn mẫu là một số gồm các chữ số 9 kèm theo các chữ số 0, số chữ số 9 bằng số chữ số của chu kì, số chữ số 0 bằng số chữ số của phần bất thường. Do đó: \(1,2\left(54\right)=1\frac{254-2}{990}=1\frac{252}{990}=1\frac{14}{55}=\frac{69}{55}\)
\(15,0\left(123\right)=15\frac{123-0}{9990}=15\frac{123}{9990}=15\frac{41}{3330}=\frac{49991}{3330}\)
HOK TỐT
Em tham khảo: Câu hỏi của Xuân Thường Đặng - Toán lớp 7 - Học toán với OnlineMath
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Ta có
\(xyz=2k\cdot3k\cdot5k=810\)
\(\Rightarrow30k^3=810\)
\(\Rightarrow k^3=810:30=27\)
\(\Rightarrow k=3\)
Với \(k=3\)ta có
\(\hept{\begin{cases}x=2\cdot3\\y=3\cdot3\\z=5\cdot3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=15\end{cases}}}\)
Vậy..................
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và \(xyz=810\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Leftrightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Thay \(\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)và \(xyz=810\)
Ta có : \(2k.3k.5k=810\)
\(\left(2.3.5\right).\left(k.k.k\right)=810\)
\(30.k^3=810\)
\(k^3=810:30\)
\(k^3=27\)
\(k=3\)
Vì \(k=3\)
Ta có : \(\hept{\begin{cases}x=2.3=6\\y=3.3=9\\z=5.3=15\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=15\end{cases}}\)