K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2018

Ta có:

\(a\ge2-b\)

\(\Rightarrow M\le\frac{1}{2-b+b^2}+\frac{1}{\left(2-b\right)^2+b}\)

\(=\frac{2b^2-4b+6}{b^4-4b^3+9b^2-10b+8}\)

\(=1-\frac{\left(b-1\right)^2\left(b^2-2b+2\right)}{b^4-4b^3+9b^2-10b+8}\le1\)

20 tháng 3 2018

chịu luôn

16 tháng 1 2018

Thiếu đề

16 tháng 1 2018

Đk : x^2-3x+1 >=0

Đặt : \(\sqrt{x^2-3x+1}\)=  a 

pt <=> a^2+4 = 4a

<=> a^2-4a+4 = 0

<=> (a-2)^2 = 0

<=> a-2 = 0

<=> a=2

<=> \(\sqrt{x^2-3x+1}\)=  2

<=> x^2-3x+1 = 4

<=> x^2-3x-3 = 0

<=> (x^2-3x+2,25)-5,25 = 0

<=> (x-3/2)^2 = 21/4

<=> x = \(\frac{3+-\sqrt{21}}{2}\)(tm)

Vậy ...............

Tk mk nha