tính S hình thang vuông ABCD, góc A = góc D = 90 độ, AB = 3cm, AD = 4cm, Góc ABC = 135 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:\hept{\begin{cases}x+2\ne0\\x-2\ne0\end{cases}\Rightarrow x\ne\pm2}\)
a) \(A=\left(\frac{x}{x^2-4}+\frac{1}{x+2}-\frac{2}{x-2}\right):\left(1-\frac{x}{x+2}\right)\)
\(A=\left[\frac{x}{\left(x-2\right).\left(x+2\right)}+\frac{x-2}{\left(x-2\right).\left(x+2\right)}-\frac{2x+4}{\left(x-2\right).\left(x+2\right)}\right]:\left(\frac{2}{x+2}\right)\)
\(A=\frac{x+x-2-2x-4}{\left(x-2\right).\left(x+2\right)}\cdot\frac{x+2}{2}=\frac{-6}{\left(x-2\right).\left(x+2\right)}\cdot\frac{\left(x+2\right)}{2}=\frac{-6}{2.\left(x-2\right)}=-\frac{3}{x-2}\)
b) \(A=-\frac{3}{x-2}=\frac{-3}{-4-2}=\frac{-3}{-6}=\frac{1}{2}\)
c) để A thuộc Z => 3 chia hết cho x-2 =>.....(tự làm nha bn)
b1:
ĐKXĐ: \(x\ne0;x\ne\pm2\)
Ta có : \(A=\left(\frac{4x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{8x^2}{x^2-4}\right)\left(\frac{x-1}{x\left(x-2\right)}-\frac{2\left(x-2\right)}{x\left(x-2\right)}\right)\)
\(=\left(\frac{4x^2-8x-8x^2}{\left(x-2\right)\left(x+2\right)}\right)\left(\frac{x-1-2x+4}{x\left(x-2\right)}\right)\)
\(=\left(\frac{4x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right)\left(\frac{3-3x}{x\left(x-2\right)}\right)\)
\(=\frac{12\left(x-1\right)}{x-2}\)
Vậy ....
Ta có : \(A< 0\Rightarrow\frac{12\left(x-1\right)}{x-2}< 0\)
Đến đây xét 2 TH 12(x-1)<0 & (x-2)>0 hoặc 12(x-1)>0 & (x-2)<0
a) Xét tam giác ACD có: AF=FC (gt) ; DK=KC (gt)
=> FK là đường trung bình của tam giác ACD
=> FK//AD
=> ADKF là hình thang
Chứng minh tương tự t cũng có: ME là đường trung bình của tam giác ABD
=> ME // AD mà FK//AD (cmt)
=> ME//FK (1)
Chứng minh tương tự ta cũng có:
MF là đường trung bình tam giác ABC , EK là đường trung bình tam giác DBC
=> MF//BC ; EK // BC
=> MF//EK (2)
Từ (1) và (2) ta có: EMFK là hình bình hành
Ta có : 5 - x^2 -x
= -x^2 -x -1/4 + 21/4
= -(x^2 + x +1/4) +21/4
= -[x^2 +2*x*1/2 + (1/2)^2 ] +21/4
= -(x+ 1/2)^2 + 21/4
Vì (x+ 1/2)^2 lớn hơn hoặc bằng 0
=> -(x+ 1/2)^2 bé hơn hoặc bằng 0
=> -(x+ 1/2)^2 +21/4 bé hơn hoặc bằng 21/4
Đẳng thức xảy ra khi x= -1/2
Vậy GTLN của B=21/4 khi x= -1/2
\(B=5-x^2-x\)
\(B=-\left(x^2+x-5\right)\)
\(B=-\left[x^2+2\cdot x\cdot\frac{1}{2}\cdot\left(\frac{1}{2}\right)^2+\frac{1}{4}-\frac{21}{4}\right]\)
\(B=-\left[\left(x+\frac{1}{2}\right)^2-\frac{21}{4}\right]\)
\(B=\frac{21}{4}-\left(x+\frac{1}{2}\right)^2\le\frac{21}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=\frac{-1}{2}\)
Vậy......
80908908908809901 + 1 = 80908908908809902
8 + 8 = 16
9 x 11 = 99
8 x 34 = 272
Hoc tot
80908908908809901+1=80908908809902
8+8=16
9x11=99
8x34=272
a) Ta có : AB//DM (gt) (1)
Xét tam giác ABH và tam giácDMH có
BHA^=DHA^(đối đỉnh)
AH=HD(A đx D qua H)
BAH^=HDM^(so le trong)
=> tam giác ABH=tam giácDMH (g-c-g)
=>AB=DM ( 2 cạnh tương ứng) (2)
Tử (1)(2) => ABDM là hbh
Vì M thuộc BC
mà AH vuông BC => AH vuông BM
Xét hbh ABDM có
AH vuông BM
=> hbh ABDM là hình thoi
Kẻ BE vuông góc với DC
Ta có : ABCD là hình thang vuông
=> AB // DC ( hình thang có 1 cặp cạnh đối song song )
=> góc B1 + góc E2 = 180o ( 2 góc trong cùng phía của AB//DC )
gócB1 = 180O - gócE2 = 180o - 90o = 90o
Ta có : gócB = góc B1 + gócB2 ( tia BE nằm giữa 2 tia BA và BC )
=> gócB2 = gócB - gócB1 = 135O - 90O = 45O
Ta có : gócB2 + gócE1 + gócC = 180O ( TỔNG 3 GÓC TRONG TAM GIÁC )
=> C = 180o - ( B2 + E1 ) = 180o - ( 45o + 90o ) = 45o
Do đó : tam giác BEC cân tại E ( góc C = góc B2 = 45o ( số đo 2 góc ở đáy bằng nhau ) )
=> EB = EC = 4cm ( 2 cạnh bên của tam giác cân )
Ta có : \(S_{\Delta BEC}=\frac{EB.EC}{2}=\frac{4.4}{2}=8\left(cm^2\right)\)
Ta có : \(S_{ABED}=AB.AD=3.4=12\left(cm^2\right)\)
Ta có : \(S_{ABCD}=S_{\Delta BEC}+S_{ABED}=8+12=20\left(cm^2\right)\)
Vậy diện tích ABCD là 20 cm2