Biết \(x+y=1\)
Tìm giá trị nhỏ nhất của biểu thức
A = \(x^3+y^3+x^2+y^2+2015\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{2x+6}+\frac{x-2}{x^2+6x+9}\)
\(=\frac{3}{2\left(x+3\right)}+\frac{x^2}{\left(x+3\right)^2}\)
\(=\frac{3\left(x+3\right)}{2\left(x+3\right)\left(x+3\right)}+\frac{2x^2}{2\left(x+3\right)\left(x+3\right)}\)
\(=\frac{2x^2+3x+9}{2\left(x+3\right)^2}\)
\(a,\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(x^2+5x+6-x^2-3x+10=0\)
\(2x+16=0\)
\(2x=-16\)
\(x=-8\)
\(b,\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\)
\(8x+16-5x^2-10x+4x^2-4x-8+2x^2-8=0\)
\(x^2-6x=0\)
\(x\left(x-6\right)=0\)
\(\orbr{\begin{cases}x=0\\x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}}\)
\(a,\)\(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow x^2+5x+6-x^2-3x+10=0\)
\(\Rightarrow2x=-16\Leftrightarrow x=-8\)
\(b,\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow8x+16-5x^2-10x+4\left(x^2-x+2\right)+2\left(x^2-4\right)=0\)
\(\Rightarrow8x+16x-5x^2-10x+4x^2-4x+8+2x^2-8=0\)
\(\Rightarrow x^2+10x=0\Rightarrow x\left(x+10\right)=0\Rightarrow x\in\left\{0;-10\right\}\)
a) (x+2)(x+3)-(x-2)(x+5)=0
\(x^2+3x+2x+6-x^2-5x+2x+10=0\)
\(2x+16=0\)
\(2x=-16\)
\(x=-8\)
Vậy......
b) (8-5x)(x+2)+4(x-2)(x+1)+2(x-2)(x+2)=0
\(8x+16-5x^2-10x+4x^2+4x-8x-8+2x^2+4x-4x-8=0\)
\(-6x+x^2=0\)
\(x\left(-6+x\right)=0\)
=> x=0 hoặc -6+x=0 <=>x=6
Vậy \(x\in\left\{0;6\right\}\)
a) \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+2\right)x+\left(x+2\right).3-\left(x+5\right)x+\left(x+5\right).2=0\)
\(\Leftrightarrow x^2+2x+3x+6-x^2+5x+2x+10=0\)
\(\Leftrightarrow12x+16=0\)
\(\Leftrightarrow12x=-16\)
\(\Leftrightarrow x=\frac{-4}{3}\)
Vậy...
3x(12x - 4 ) -9x (4x -3 ) = 30
<=> 36x² - 12x - 36x²+27x = 30
<=> 15x = 30
<=> x=2
\(3x\left(12x-4\right)-9.\left(4x-3\right)=30\)
\(=>36x^2-12x-36x^2+27x=30\)
\(=>15x=30\)
\(x=30:15=2\)
Vậy x = 2.
~ Hok tốt ~
a) VT = (a - 1)(a - 2) + (a - 3)(a + 4) - (2a2 + 5a - 34)
= a2 - 2a - a + 2 + a2 + 4a - 3a - 12 - 2a2 - 5a + 34
= (a2 + a2 - 2a2) - (2a + a - 4a + 3a + 5a) + (2 - 12 + 34)
= -7a + 24
=> VT = VP
=> đpcm
b) VT = (a - b)(a2 + ab + b2) - (a + b)(a2 - ab + b2)
= (a3 - b3) - (a3 + b3)
= a3 - b3 - a3 - b3
= -2b3
=> VT = VP
=> Đpcm
Câu b bn xem đề lại (a + b)(a2 - ab + b2) ko phải là (a + b)(a2 - ab - b2)
\(\left(x-a\right)\left(x-b\right)\left(x-c\right)=\left(x^2-ax-bx+ab\right)\left(x-c\right)\)
\(=x^3-ax^2-bx^2+abx-cx^2+acx+bcx-abc\)
\(=x^3-x^2\left(a+b+c\right)+x\left(ab+ac+bc\right)-abc\)
Nhưn vậy: \(x^3-ax^2+bx-c=x^3-x^2\left(a+b+c\right)+x\left(ab+bc+ac\right)-abc\)
Cân bằng hệ số hai vế ta có:
\(\hept{\begin{cases}a=a+b+c\left(1\right)\\b=ab+bc+ac\left(2\right)\\c=abc\left(3\right)\end{cases}}\)
(3) <=> abc-c=0 <=> c(ab-1)=0
+) TH1 c=0
\(\hept{\begin{cases}b=0\\b=ab\end{cases}}\)
Như vậy với trường hợp này: b=c=0 , với mọi a
TH2: ab-1 =0 <=> ab=1 => a, b khác 0 => c khác 0
\(\hept{\begin{cases}b+c=0\\b=1+bc+ac\end{cases}}\Leftrightarrow\hept{\begin{cases}b=-c\\-c=1-c^2-ab\end{cases}\Leftrightarrow}\hept{\begin{cases}b=-c\\c^2-c=0\end{cases}}\Leftrightarrow c=1,b=-1,a=-1\)
Do đó trường hợp này a=-1, b=-1, c=1
Kết luận;...
A={5;6}
Tập hợp A có tử là 5 và 6
=> tập hợp A có 2 tử
Do x+y=1 nên x, y không đồng thời bằng 0
+) Nếu \(x=0\)\(\Rightarrow\)\(y=1\)\(\Rightarrow\)\(A=0^3+1^3+0^2+1^2+2015=2017\)
Tương tự với y = 0
+) Nếu x, y khác 0, ta có : \(A=x^3+y^3+x^2+y^2+2015=\frac{x^4}{x}+\frac{y^4}{y}+x^2+y^2+2015\)
\(\ge\frac{\left(x^2+y^2\right)^2}{x+y}+x^2+y^2+2015\ge\frac{\frac{\left(x+y\right)^4}{4}}{x+y}+\frac{\left(x+y\right)^2}{2}+2015=\frac{3}{4}+2015\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{2}\)
Do \(\frac{3}{4}+2015< 2017\) nên GTNN của \(A=\frac{3}{4}+2015\) khi \(x=y=\frac{1}{2}\)