Cho f(x) = \(x^6-10x^5+10x^4-10x^3+10x^2-10x+10\) Tính f(9)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy rằng:
\(a=\frac{1}{a}\times a\)
\(b=\frac{1}{b}\times b\)
\(c=\frac{1}{c}\times c\)
Suy ra: Kết quả cần tìm của a, b, c là abc. Ta có:
\(a\times b\times c=abc\)
Vậy:
\(abc=abc\times\frac{1}{a}\times\frac{1}{b}\times\frac{1}{c}\)
\(abc=\frac{a}{a}\times\frac{b}{b}\times\frac{c}{c}\)
\(abc=1\)
Vậy abc = 1.
Gía trị của biểu thức đó là:
\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}.\)
\(=1+1+1+1+1+1.\)
\(=6\)
Vậy giá trị của biểu thức đó là 6.
nguuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
Có: \(\frac{3a+b+2c}{2a+c}=\frac{a+3b+c}{2b}=\frac{a+2b+2c}{b+c}\)
\(\Rightarrow\frac{a+b+c+2a+c}{2a+c}=\frac{a+b+c+2b}{2b}=\frac{a+b+c+b+c}{b+c}\)
\(\Rightarrow\frac{a+b+c}{2a+c}+1=\frac{a+b+c}{2b}+1=\frac{a+b+c}{b+c}+1\)
\(\Rightarrow\frac{a+b+c}{2a+c}=\frac{a+b+c}{2b}=\frac{a+b+c}{b+c}\)
\(\Rightarrow2a+c=2b=b+c\)
\(\Rightarrow\hept{\begin{cases}c=b\\a=\frac{1}{2}b\end{cases}}\)
Thay vào biểu thức trên , ta được:
\(P=\)\(\frac{\left(\frac{1}{2}b+b\right)\left(b+b\right)\left(b+\frac{1}{2}b\right)}{\frac{1}{2}b.b.b}=9\)
Vậy \(P=9\)
\(f\left(x\right)=x^6-10x^5+10x^4-10x^3+10x^2-10x+10\)
\(f\left(x\right)=x^5\left(x-10\right)+x^3\left(x-10\right)+x\left(x-10\right)+10\)
\(f\left(x\right)=\left(x-10\right)\left(x^5+x^3+x\right)+10\)
\(f\left(x\right)=x\left(x-10\right)\left(x^4+x^2+1\right)+10\)
\(\Rightarrow f\left(9\right)=9.\left(9-10\right)\left(9^4+9^2+1\right)+10\)
\(\Leftrightarrow f\left(9\right)=9.\left(-1\right).\left(6643\right)+10\)
\(\Leftrightarrow f\left(9\right)=-59777\)
P/s : làm cho zui thôi nha , sai đừng đáp đá
\(x=9\)\(\Rightarrow x+1=10\)
\(\Rightarrow f\left(9\right)=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\)
\(=x^6-x^6-x^5+x^5+.......-x+x+1=1\)