K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2019

Pt đã cho \(\Leftrightarrow3x+10x+8+2x+20x+48=9x+6x-36\Leftrightarrow35x+56=15x-36\Leftrightarrow20x=-92\)

\(\Rightarrow x=\frac{-23}{5}\)

H2 + CuO ---> Cu + H2O

x        x           x

a) xuất hiện các tinh thể đồng (màu đồng) trong ống nghiệm và có hơi nước bám trên thành ống nghiệm.

b) Số mol CuO ban đầu = 20/80 = 0,25 mol. Gọi x là số mol CuO đã tham gia phản ứng. Số mol CuO còn dư = 0,25 - x mol. Số mol Cu là x mol.

Khối lượng chất rắn sau phản ứng = khối lượng CuO dư + khối lượng Cu = 80(0,25-x) + 64x = 16,8. Thu được x = 0,2 mol.

Số mol H2 = x = 0,2 mol. Nên V = 0,2.22,4 = 4,48 lít.

14 tháng 3 2019

Áp dụng bđt AM-GM:

\(x^2y^2+y^2z^2\ge2\sqrt{x^2y^4z^2}=2xy^2z\)

\(y^2z^2+z^2x^2\ge2\sqrt{x^2y^2z^{^4}}=2xyz^2\)

\(x^2y^2+z^2x^2\ge2\sqrt{x^4y^2z^2}=2x^2yz\)

Cộng theo vế và rút gọn: \(x^2y^2+y^2z^2+z^2x^2\ge x^2yz+xy^2z+xyz^2\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2-x^2yz-xy^2z-xyz^2\ge0\left(đpcm\right)\)

14 tháng 3 2019

\(\left(xy-yz\right)^2=x^2y^2-2xy^2z+y^2z^2\ge0\)

\(\Rightarrow x^2y^2+y^2z^2\ge2xy^2z\)

Thiết lập hai BĐT còn tại tương tự và cộng theo vế và chia cho 2:

\(x^2y^2+y^2z^2+z^2x^2\ge x^2yz+y^2xz+z^2xy\)

Chuyển vế ta có đpcm.

Dấu "=" xảy ra khi \(xy=yz=zx\Leftrightarrow x=y=z\)

14 tháng 3 2019

\(\frac{x-1}{2013}+\frac{x-2}{2012}+\frac{x-3}{2011}=\frac{x-4}{2010}+\frac{x-5}{2009}+\frac{x-6}{2008}\)

\(\Leftrightarrow\)\(\left(\frac{x-1}{2013}-1\right)+\left(\frac{x-2}{2012}-1\right)+\left(\frac{x-3}{2011}-1\right)=\left(\frac{x-4}{2010}-1\right)+\left(\frac{x-5}{2009}-1\right)+\left(\frac{x-6}{2008}-1\right)\)

\(\Leftrightarrow\frac{x-2014}{2013}+\frac{x-2014}{2012}+\frac{x-2013}{2011}=\frac{x-2014}{2010}+\frac{x-2014}{2009}+\frac{x-2014}{2008}\)

\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)

tự làm nốt~

14 tháng 3 2019

kudo shinichi làm sai ở chỗ:

\(\frac{x-2013}{2011}\)phải là \(\frac{x-2014}{2011}\)mới đúng nhé

14 tháng 3 2019

\(A=7\cdot25^n-7\cdot6^n+19\cdot6^n=7\left(25^n-6^n\right)+19\cdot6^n\)

Ta thấy ​\(25^n-16^n⋮25-16\Rightarrow25^n-16^n⋮19\Rightarrow7\cdot\left(25^n-16^n\right)⋮19\)

            \(19\cdot6^n⋮19\)

            \(\Rightarrow A⋮19\)

14 tháng 3 2019

Cảm ơn bạn

14 tháng 3 2019

Do n nguyên và n > 1 nên \(n\ge2\)

Với n = 2 \(n^3-13n=-18⋮6\)

Giả sử đúng với n = k (k>1) tức là \(k^3-13k⋮6\)

Ta chứng minh điều có đúng với n = k + 1

Thật vậy: \(\left(k+1\right)^3-13\left(k+1\right)=k^3+3k^2+3k+1-13k-13\)

\(=\left(k^3-13k\right)+\left(3k^2+3k-12\right)\)

Ta chỉ cần chứng minh: \(3k^2+3k-12⋮6\)

\(\Leftrightarrow3\left(k^2+k\right)⋮6\Leftrightarrow k^2+k⋮2\)

Tới đây xét tính chẵn lẻ nữa là xong=)

14 tháng 3 2019

n3 -13n = n- n - 12n = n(n2-1) - 12n = (n-1)n(n+1) - 12n

Ta có: (n-1)n(n+1) là 3 số nguyên liên tiếp nên chia hết cho 6 và 12n chia hết cho 6 => n3 -13n \(⋮\)6