K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2019

Câu hỏi của Minh Nguyệt - Toán lớp 8 - Học toán với OnlineMath

Bạn tham khảo.

25 tháng 3 2019

a)Hai tam giác vuông  \(\Delta AHC\approx\Delta BKC\)vì có chung góc nhọn C

b) Vì tam giác AHC đồng dạng tam giác BKC nên

\(\frac{AH}{BK}=\frac{HC}{KC}=\frac{AC}{BC}=\frac{4}{3}\)

Theo định lý Pytago ta có 

\(AH=\sqrt{8^2-3^2}=\sqrt{55}\)

\(\frac{AH}{BK}=\frac{\sqrt{55}}{BK}=\frac{4}{3}\)

\(\Rightarrow BK=\frac{3\sqrt{55}}{4}\)

Theo Pytago ta có

\(KC=\sqrt{6^2-\left(\frac{3\sqrt{55}}{4}\right)^2}=\frac{9}{4}\left(cm\right)\)

\(KA=8-\frac{9}{4}=\frac{23}{4}\left(cm\right)\)

25 tháng 3 2019

\(\frac{60}{x+5}+\frac{60}{x-4}=\frac{120}{x}\Rightarrow\frac{1}{x+5}+\frac{1}{x-4}=\frac{2}{x}\)

\(\Rightarrow\frac{x\left(x-4\right)+x\left(x+5\right)-2\left(x+5\right)\left(x-4\right)}{x\left(x+5\right)\left(x-4\right)}=0\)

\(\Rightarrow\frac{x^2-4x+x^2+5x-2x^2-2x+40}{x\left(x+5\right)\left(x-4\right)}=0\)

\(\frac{-x+40}{x\left(x+5\right)\left(x-4\right)}=0\)

mà x(x+5)(x-4) khác 0 nên 

-x+40=0

 nên x=40

25 tháng 3 2019

1,\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2\left(b-1\right)^2\ge0\)(Luôn đúng)

Dấu '=' xảy ra khi \(a=b=1\)

26 tháng 3 2019

2/Bổ sung đk a,b >= 0 (nếu a,b < 0,cho a=b=-2 suy ra a^3 + b^3 + 1 -3ab = -27 < 0)

Ta chứng minh BĐT \(x^3+y^3+z^3\ge3xyz\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz\ge0\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\) (đúng)

Áp dụng vào,suy ra: \(a^3+b^3+1^3-3ab\ge3ab-3ab=0\)

Dấu "=" xảy ra khi a = b = c = 1

26 tháng 3 2019

Có: \(x+y+z=0\)

CM được: \(x^3+y^3+z^3=3xyz\)

Có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow xy+xz+yz=0\)

\(\Leftrightarrow\left(xy+xz+yz\right)^3=0\)

\(\Leftrightarrow x^3y^3+x^3z^3+y^3z^3+3\left(xy+yz\right)\left(xz+yz\right)\left(xz+xy\right)=0\)(từ CT: (a+b+c)^3=a^3+b^3+c^3+3(a+b)(a+c)(b+c)

\(\Leftrightarrow x^3y^3+x^3z^3+y^3z^3+3xyz\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)(Thế x+y=-z ; y+z=-x và x+z=-y)

\(\Leftrightarrow x^3y^3+x^3z^3+y^3z^3=3x^2y^2z^2\)

\(\Leftrightarrow2\left(x^3y^3+x^3z^3+y^3z^3\right)=6x^2y^2z^2\)(1)

Có: \(x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow x^6+y^6+z^6+2\left(x^3y^3+x^3z^3+y^3z^3\right)=9x^2y^2z^2\)(2)

Từ (1) và (2):

Có: \(x^6+y^6+z^6=3x^2y^2z^2\)

Cho nên: \(\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=\frac{3x^2y^2z^2}{3xyz}=xyz\)

1 tháng 7 2020

bằng gì kệ màylởp 3 đó híhí