Bài 8. Trong một căn phòng, người ta nhận thấy rằng nếu hai người quen nhau thì sẽ không có
một người nào quen cả hai người đó, nếu hai người không quen nhau thì sẽ cùng quen với 2
người khác. Chứng minh rằng tất cả mọi người đều có số người quen như nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thể tích nước trong thùng ban đầu là:
\(V_1=x\cdot a\cdot b\left(dm^3\right)\)
Diện tích đáy trong thùng sau khi nghiêng là:
\(S_{đáy}=\dfrac{1}{2}\cdot\dfrac{3}{4}a\cdot8=3a\left(dm^2\right)\)
Thể tích nước sau khi nghiêng thùng là: \(V_2=3a\cdot b\left(dm^3\right)\)
Vì thể tích nước trước và sau khi nghiêng thùng đều không thay đổi nên \(x\cdot a\cdot b=3\cdot a\cdot b\)
=>x=3
Ta có; ΔABC=ΔDEF
=>AB=DE; BC=EF; AC=DF; \(\widehat{BAC}=\widehat{EDF};\widehat{ABC}=\widehat{DEF};\widehat{ACB}=\widehat{DFE}\)
Xét ΔBAM và ΔEDN có
AB=DE
\(\widehat{ABM}=\widehat{DEN}\)
BM=EN
Do đó: ΔBAM=ΔEDN
=>AM=DN và \(\widehat{BAM}=\widehat{EDN}\)
a: \(\widehat{MON}+\widehat{O_1}+45^0=180^0\)
=>\(\widehat{O_1}=180^0-90^0-45^0=45^0\)
Ta có: \(\widehat{O_1}=\widehat{MNO}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên OB//AM
b: Ta có: OB//AM
MA\(\perp\)AB
Do đó: OB\(\perp\)BA
\(A=\dfrac{1}{299}\left(1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+\dfrac{1}{3}-\dfrac{1}{302}+...+\dfrac{1}{101}-\dfrac{1}{400}\right)\)
\(299A=1+\dfrac{1}{2}+...+\dfrac{1}{101}-\left(\dfrac{1}{300}+\dfrac{1}{301}+...+\dfrac{1}{400}\right)\)
Thêm bớt \(\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{299}\) ta được:
\(299A=1+\dfrac{1}{2}+...+\dfrac{1}{101}+\left(\dfrac{1}{102}+...+\dfrac{1}{299}\right)-\left(\dfrac{1}{102}+...+\dfrac{1}{299}\right)-\left(\dfrac{1}{300}+...+\dfrac{1}{400}\right)\)
\(299A=\left(1+\dfrac{1}{2}+...+\dfrac{1}{299}\right)-\left(\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{400}\right)\)
\(101B=1-\dfrac{1}{102}+\dfrac{1}{2}-\dfrac{1}{103}+\dfrac{1}{3}-\dfrac{1}{104}+....+\dfrac{1}{299}-\dfrac{1}{400}\)
\(101B=\left(1+\dfrac{1}{2}+...+\dfrac{1}{299}\right)-\left(\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{400}\right)\)
\(\Rightarrow299A=101B\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{101}{299}\)
a: m\(\perp\)a
n\(\perp\)a
Do đó: m//n
b: m//n
=>\(\widehat{A_1}=\widehat{ABC}\)(hai góc so le trong)
=>\(\widehat{A_1}=72^0\)
c: Xét ΔABC có \(\widehat{BAC}+\widehat{ACB}+\widehat{ABC}=180^0\)
=>\(\widehat{C_1}=180^0-64^0-72^0=44^0\)
Áp dụng công thức: \(1+2+...+n=\dfrac{n\left(n+1\right)}{2}\)
\(\Rightarrow1-\dfrac{1}{1+2+...+n}=1-\dfrac{1}{\dfrac{n\left(n+1\right)}{2}}=1-\dfrac{2}{n\left(n+1\right)}\)
\(=\dfrac{n\left(n+1\right)-2}{n\left(n+1\right)}=\dfrac{n^2+n-2}{n\left(n+1\right)}=\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
Do đó:
\(A=\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}.\dfrac{3.6}{4.5}...\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
\(=\dfrac{1.2.3...\left(n-1\right)}{2.3.4...n}.\dfrac{4.5.6...\left(n+2\right)}{3.4.5...\left(n+1\right)}=\dfrac{1}{n}.\dfrac{n+2}{3}=\dfrac{n+2}{3n}\)
\(\Rightarrow A=\dfrac{B}{3}\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{1}{3}\)
a.
Do \(My||BC\Rightarrow\widehat{CMy}=\widehat{MCB}\) (so le trong)
Mà \(\widehat{MCB}=45^0\Rightarrow\widehat{CMy}=45^0\)
lại có My là phân giác của \(\widehat{CMx}\Rightarrow\widehat{CMx}=2\widehat{CMy}\)
\(\Rightarrow\widehat{CMx}=2.45^0=90^0\)
b.
Do \(BC||My\Rightarrow\widehat{CBM}=\widehat{xMy}\)
Mà \(\widehat{xMy}=\widehat{CMy}=45^0\) (My là phân giác)
\(\Rightarrow\widehat{CBM}=45^0\)
Lại có Bx là phân giác \(\widehat{ABC}\Rightarrow\widehat{ABC}=2\widehat{CBM}\)
\(\Rightarrow\widehat{ABC}=2.45^0=90^0\)
\(\Rightarrow\Delta ABC\) vuông tại B
\(\left(\dfrac{3}{2}\right)^5\cdot x=\left(\dfrac{3}{2}\right)^7\)
=>\(x=\left(\dfrac{3}{2}\right)^7:\left(\dfrac{3}{2}\right)^5=\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)