Cho 2 số thực x, y thỏa mãn: \(x,y>-1\) và \(x-2y\ge1\).
Tính giá trị nhỏ nhất của biểu thức: \(A=\frac{x^2+y^2+2x+2y+2}{(x+1)\times\left(y+1\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình có nghĩ ra cách này mấy bạn xem giúp mình ạ,
Với \(\hept{\begin{cases}x>y\\xy=1\end{cases}}\) ta có:
\(P=\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\frac{\left(x-y\right)^2}{x-y}+\frac{2.1}{x-y}=\left(x-y\right)+\frac{2}{x-y}\)
Áp dụng BĐT Cô - si cho 2 số \(x-y\)và \(\frac{2}{x-y}\)không âm (vì x>y)
\(P\ge2\sqrt{\left(x-y\right).\frac{2}{x-y}}=2\sqrt{2}\)
Vậy minP = \(2\sqrt{2}\)<=> Dấu "=" xảy ra
<=> \(x-y=\frac{2}{x-y}\)
<=> \(\left(x-y\right)^2=2\)
<=> \(x-y=\sqrt{2}\)(vì x - y >0)
Kết hợp với xy = 1 ta có:
\(\hept{\begin{cases}x-y=\sqrt{2}\\xy=1\end{cases}}\)<=> \(\hept{\begin{cases}x+\left(-y\right)=\sqrt{2}=S\\x.\left(-y\right)=-1=P\end{cases}}\)
Xét \(S^2-4P=\left(0\sqrt{2}\right)^2-4.\left(-1\right)=2+4=6>0\)
Vậy x và -y là 2 nghiệm của phương trình:
\(x^2-\sqrt{2}x+\left(-1\right)=0\)
=> \(\orbr{\begin{cases}x_1=\frac{\sqrt{2}+\sqrt{6}}{2}\\x_2=\frac{\sqrt{2}-\sqrt{6}}{2}\end{cases}}\)
Vậy: \(x=\frac{\sqrt{2}+\sqrt{6}}{2}\) và \(y=\frac{-\sqrt{2}+\sqrt{6}}{2}\)
hoặc \(x=\frac{\sqrt{2}-\sqrt{6}}{2}\)và \(y=\frac{-\sqrt{2}-\sqrt{6}}{2}\)
ĐKXĐ : x > 0
\(P=\left(\frac{1}{x+\sqrt{x}}-\frac{1}{\sqrt{x}+1}\right):\frac{\sqrt{x}}{x+2\sqrt{x+1}}\left(x>0\right)\)
\(=\left[\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}+1}\right]:\frac{\sqrt{x}}{\left(\sqrt{x}+1\right)^2}\)
\(=\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}.\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
\(=\frac{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}{x}\)
\(=\frac{1-x}{x}\)
Phương trình 2 nghiệm phân biệt khi
\(\Delta=\left(1-m\right)^2-4\left(-m\right).1=\left(m+1\right)^2>0\)
\(\Leftrightarrow m\ne-1\)
Hệ thức Vière : \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-m\end{cases}}\)
Khi đó \(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)
<=> \(-x_1x_2+5\left(x_1+x_2\right)\ge-21\)
<=> \(-\left(-m\right)+5\left(m-1\right)\ge-21\)
\(\Leftrightarrow6m\ge-16\Leftrightarrow m\ge-\frac{8}{3}\)
Kết hợp điều kiện => \(\hept{\begin{cases}m\ge-\frac{8}{3}\\m\ne-1\end{cases}}\)thì thỏa mãn bài toán
\(\Delta=\left(1-m\right)^2+4m=\left(m+1\right)^2>0\Rightarrow m\ne-1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-m\end{matrix}\right.\)
\(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)
\(\Leftrightarrow5\left(x_1+x_2\right)-x_1x_2\ge-21\)
\(\Leftrightarrow5\left(m-1\right)+m\ge-21\)
\(\Leftrightarrow m\ge-\dfrac{8}{3}\)
Kết hợp điều kiện ban đầu ta được: \(\left\{{}\begin{matrix}m\ne-1\\m\ge-\dfrac{8}{3}\end{matrix}\right.\)
`Answer:`
`x^2+4x+7=(x+4)\sqrt{x^2+7}`
Ta đặt `v=\sqrt{x^2+7}` và `v>=\sqrt{7}`
`=>v^2=x^2+7`
Phương trình trở thành: `v^2+4x=(x+4)v`
`<=>v^2-xv+4x-4v=0`
`<=>(v-4)(v-x)=0`
`<=>v=4` hoặc `v=x`
Với `v=4` ta được: `\sqrt{x^2+7}=4`
`=>x^2+7=16`
`<=>x^2=9`
`<=>x=+-3`
Với `v=x` ta được: `\sqrt{x^2+7}=x`
\(\Leftrightarrow\hept{\begin{cases}x\ge0\\x^2+7=x^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\7=0\text{(Vô lý)}\end{cases}}\Leftrightarrow x\in\varnothing\)
Đặt \(\sqrt{x^2+7}=t>0\)
Pt trở thành:
\(t^2-\left(x+4\right)t+4x=0\)
\(\Leftrightarrow t^2-xt-4t+4x=0\)
\(\Leftrightarrow t\left(t-x\right)-4\left(t-x\right)=0\)
\(\Leftrightarrow\left(t-x\right)\left(t-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=4\\t=x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+7}=4\\\sqrt{x^2+7}=x\left(x\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+7=16\\x^2+7=x^2\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=\pm3\)
ta có \(\Delta\)= 52-4.(-3).2 =49>0, \(\sqrt{\Delta}\)=7
Vậy phương trình có hai nghiệm phân biệt : x1=\(\frac{-5-7}{2.2}\)=-3; x2=\(\frac{-5+7}{2.2}\)=0,5
Đặt \(\left\{{}\begin{matrix}x+1=a>0\\y+1=b>0\end{matrix}\right.\) \(\Rightarrow\left(a-1\right)-2\left(b-1\right)\ge1\)
\(\Rightarrow a\ge2b\Rightarrow\dfrac{a}{b}\ge2\)
\(A=\dfrac{\left(x+1\right)^2+\left(y+1\right)^2}{\left(x+1\right)\left(y+1\right)}=\dfrac{a^2+b^2}{ab}=\dfrac{a}{b}+\dfrac{b}{a}\)
\(A=\left(\dfrac{a}{4b}+\dfrac{b}{a}\right)+\dfrac{3}{4}.\dfrac{a}{b}\ge2\sqrt{\dfrac{ab}{4ab}}+\dfrac{3}{4}.2=\dfrac{5}{2}\)
\(A_{min}=\dfrac{5}{2}\) khi \(a=2b\) hay \(x+1=2\left(y+1\right)\)