Giải các phương trình
\(x^3\)+\(\dfrac{x^3}{\left(x-1\right)^3}\)+\(\dfrac{3x^2}{x-1}\)-28=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`-x^2+6x-11`
`=-x^2+6x-9-2`
`=-(x-3)^{2}-2`
Vì \(-(x-3)^{2} \le 0\)
\(<=>-(x-3)^{2}-2 \le -2\)
Hay \(-x^2+6x-11 \le -2\)
Dấu "`=`" xảy ra `<=>x-3=0<=>x=3`
-x2+6x-11
=>-(x2-6x+11)
=>-(x-3)2-2
vì-(x-3)2\(\le0\)
=>-(x-3)2-2\(\le\)-2
dấu bằng xảy ra khi x-3=0=>x=3
vậy gtln của -x2+6x-11 là -2 khi x=3
đúng cho like
Lời giải:
$4x-x^2+3=7-(x^2-4x+4)=7-(x-2)^2$
Ta thấy $(x-2)^2\geq 0$ với mọi $x\in\mathbb{R}$
$\Rightarrow 4x-x^2+3=7-(x-2)^2\leq 7$
Vậy GTLN của biểu thức là $7$. Giá trị này đạt tại $x-2=0$
$\Leftrightarrow x=2$
Lời giải:
$x^2-20x+101=(x^2-20x+10^2)+1=(x-10)^2+1$
Ta thấy: $(x-10)^2\geq 0$ với mọi $x\in\mathbb{R}$
$\Rightarrow x^2-20x+101=(x-10)^2+1\geq 1$
Vậy GTNN của biểu thức là $1$. Giá trị này đạt tại $x-10=0\Leftrightarrow x=10$
Bài 2:
a.
$8x^2y-8xy+2x=2x(4xy-4y+1)$
b.
$x^2-6x-y^2+9=(x^2-6x+9)-y^2=(x-3)^2-y^2=(x-3-y)(x-3+y)$
c.
$(x^2+2x)(x^2+4x+3)-24$
$=x(x+2)(x+1)(x+3)-24$
$=[x(x+3)][(x+2)(x+1)]-24$
$=(x^2+3x)(x^2+3x+2)-24$
$=a(a+2)-24=a^2+2a-24=(a^2+6a)-(4a+24)=a(a+6)-4(a+6)$
$=(a-4)(a+6)=(x^2+3x-4)(x^2+3x+6)$
$=[(x^2-x)+(4x-4)](x^2+3x+6)=[x(x-1)+4(x-1)](x^2+3x+6)$
$=(x-1)(x+4)(x^2+3x+6)$
Bài 3:
a.
$(x+3)^2-(x+2)(x-2)=4x+17$
$\Leftrightarrow (x^2+6x+9)-(x^2-4)=4x+17$
$\Leftrightarrow 6x+13=4x+17$
$\Leftrightarrow 2x=4$
$\Leftrightarrow x=2$
b.
$(x-3)(x^2+3x+9)-x(x^2-4)=1$
$\Leftrightarrow x^3-3^3-(x^3-4x)=1$
$\Leftrightarrow -27+4x=1$
$\Leftrightarrow 4x=28$
$\Leftrightarrow x=7$
c.
$3x^2+7x=10$
$\Leftrightarrow 3x^2+7x-10=0$
$\Leftrightarrow (3x^2-3x)+(10x-10)=0$
$\Leftrightarrow 3x(x-1)+10(x-1)=0$
$\Leftrightarrow (x-1)(3x+10)=0$
$\Leftrightarrow x-1=0$ hoặc $3x+10=0$
$\Leftrightarrow x=1$ hoặc $x=\frac{-10}{3}$
\(\dfrac{x^3\left(x-1\right)^3}{\left(x-1\right)^3}+\dfrac{x^3}{\left(x-1\right)^3}+\dfrac{3x^2\left(x-1\right)^2}{\left(x-1\right)^3}=28\)
ĐK: \(x\ne1\)
\(x^3+\dfrac{x^3}{\left(x-1\right)^3}+\dfrac{3x^2}{x-1}-28=0\)
\(x^3\left(x-1\right)^3+x^3+3x^2\left(x-1\right)^2-28\left(x-1\right)^3=0\)
\(\left(x^2-x\right)^3+3\left(x^2-x\right)^2+x^3-28\left(x^3-3x^2+3x-1\right)=0\)
\(\left(x^2-x\right)^3+3\left(x^2-x\right)^2+3\left(x^2-x\right)+1-\left(27x^3-81x^2+81x-27\right)=0\)
\(\left(x^2-x+1\right)^3-\left(3x-3\right)^3=0\)
\(\left(x^2-x+1-3x+3\right)\left[\left(x^2-x+1\right)^2+\left(x^2-x+1\right)\left(3x-3\right)+\left(3x-3\right)^2\right]=0\)
\(x^2-4x+4=0\)
\(x=2\) (TMĐK)