a,b,c lớn hơn hoặc bằng 0, \(a^2+b^2+c^2=1\) . Min
P\(\sqrt{a+b^2}+\sqrt{b+c^2}+\sqrt{c+a^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\cdot\frac{xy+z\left(x+y+z\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow x=-y\left(h\right)y=-z\left(h\right)z=-x\)
Xét \(x=-y\)
Ta có:
\(\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{x^{2017}}+\frac{1}{-y^{2017}}+\frac{1}{y^{2017}}=\frac{1}{z^{2017}}\)
\(\frac{1}{x^{2017}+y^{2017}+z^{2017}}=\frac{1}{-x^{2017}+y^{2017}+z^{2017}}=\frac{1}{z^{2017}}\)
\(\Rightarrow\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{x^{2017}+y^{2017}+z^{2017}}\left(dpcm\right)\)
Một cái chặt hơn nè:))
CMR nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) thì \(\frac{1}{x^n}+\frac{1}{y^n}+\frac{1}{z^n}=\frac{1}{x^n+y^n+z^n}\) với n lẻ.
a) (2600+6400) - 3x = 1200
=> 9000 - 3x = 1200
=> 3x = 9000 - 1200
=> 3x = 7800
=> x = 7800 : 3
=> x = 2600
Vậy x = 2600.
b) [(6x - 72) : 2 - 84] . 28 = 5628
=> [(6x - 72) : 2 - 84] = 5628 : 28
=> (6x - 72) : 2 - 84 = 201
=> (6x - 72) : 2 = 201 + 84
=> (6x - 72) : 2 = 285
=> (6x - 72) = 285 . 2
=> 6x - 72 = 570
=> 6x = 570 + 72
=> 6x = 642
=> x = 642 : 6
=> x = 107
Vậy x = 107.