K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 12 2022

TH1: tam giác chứa điểm O: 2 điểm còn lại 1 điểm phải được chọn từ a và 1 điểm được chọn từ b \(\Rightarrow8.10\) tam giác

TH2: tam giác không chứa điểm O \(\Rightarrow\) tam giác đó có 2 đỉnh thuộc a và 1 đỉnh thuộc b hoặc 1 đỉnh thuộc a, 2 đỉnh thuộc b \(\Rightarrow C_8^2.C_{10}^1+C_8^1.C_{10}^2\) tam giác

Tổng cộng: \(8.10+C_8^2.C_{10}^1+C_8^1.C_{10}^2=...\)

1 tháng 1 2023

Nguuuuu theeeeeeeeee

NV
24 tháng 12 2022

Tổng ngày sinh của 3 em là số chẵn có các trường hợp sau thỏa mãn: cả 3 em ngày sinh đều chẵn, 1 em ngày chẵn 2 em ngày lẻ

\(\Rightarrow C_5^3+C_5^1.C_6^2\) cách chọn

Xác suất: \(P=\dfrac{C_5^3+C_5^1.C_6^2}{C_{11}^3}=...\)

NV
24 tháng 12 2022

Lập số có 6 chữ số bất kì: \(9.10.10.10.10.10=9.10^5\) số

Lập số có 6 chữ số sao cho ko có mặt chữ số 0: \(9.9.9.9.9.9=9^6\) số

Lập số có 6 chữ số sao cho ko có mặt chữ số 1: \(8.9.9.9.9.9=8.9^5\) số

Lập số có 6 chữ số sao cho ko có mặt cả 0 và 1: \(8.8.8.8.8.8=8^6\) số

Vậy số số có 6 chữ số và có mặt cả 0 và 1 là:

\(9.10^5-\left(9^6+8.9^5-8^6\right)\) số

1 tháng 1 2023

Méo biết làm con choá

NV
24 tháng 12 2022

Chọn ngày kiểm tra môn toán: 6 cách, chọn ngày kiểm tra môn văn: 5 cách, chọn ngày kiểm tra môn anh: 4 cách

\(\Rightarrow\) Không gian mẫu: \(6.5.4=120\) cách

Nếu toán kiểm tra vào thứ 4 => 2 môn còn lại chỉ có 3 ngày thứ 5, thứ 6, thứ 7 để kiểm tra nên ko thể xếp sao cho 2 môn này cách nhau ít nhất 1 ngày (loại)

\(\Rightarrow\) Toán chỉ có thể kiểm tra vào thứ 2 hoặc 3

TH1: toán kiểm tra vào thứ Hai: 2 môn còn lại có 3 cách xếp là 46,47,57. Hoán vị 2 môn này có 2 cách \(\Rightarrow2.3=6\)

TH2: toán kiểm tra vào thứ Ba: 2 môn còn lại chỉ có 1 cách là 57, hoán vị 2 môn này có 2 cách

Tổng cộng: \(6+2=8\) cách

Xác suất: \(P=\dfrac{8}{120}\)

NV
24 tháng 12 2022

Gọi chữ số cuối là x thì tổng 4 chữ số đầu là \(x+2\)

\(\Rightarrow\) Tổng 5 chữ số là: \(2x+2\)

Mặt khác tổng 5 chữ số nhỏ nhất từ tập đã cho là \(1+2+3+4+5=15\)

\(\Rightarrow2x+2\ge15\Rightarrow2x\ge13\)

\(\Rightarrow x=\left\{7;8;9\right\}\)

TH1: \(x=7\Rightarrow\) tổng 4 chữ số đầu là 9 mà \(1+2+3+4>9\Rightarrow\) không tồn tại 4 chữ số thỏa mãn

TH2: \(x=8\Rightarrow\) tổng 4 chữ số đầu bằng 10

Trong 9 chữ số, chỉ có duy nhất bộ \(\left\{1;2;3;4\right\}\) có tổng bằng 10

Do đó số số trong trường hợp này là: \(4!\) số

TH3: \(x=9\Rightarrow\) tổng 4 chữ số đầu bằng \(11\Rightarrow\) có 1 bộ 4 chữ số thỏa mãn là \(\left\{1;2;3;5\right\}\)

Trường hợp này cũng có \(4!\)  số

Xác suất: \(P=\dfrac{4!+4!}{A_9^5}=...\)

NV
23 tháng 12 2022

a.

Do N là trọng tâm tam giác ABC \(\Rightarrow\) N là giao điểm AK và BO

Hay A,N,K,F thẳng hàng

\(\Rightarrow\left(AMN\right)\cap\left(SCD\right)=MF\)

b.

Trong mp (SCD) nối FM kéo dài cắt SD tại I

Dễ dàng nhận thấy \(SO=\left(SAC\right)\cap\left(SBD\right)\)

\(\left\{{}\begin{matrix}M\in SC\in\left(SAC\right)\\M\in\left(AMN\right)\end{matrix}\right.\) \(\Rightarrow AM=\left(SAC\right)\cap\left(AMN\right)\)

\(N\in BD\in\left(SBD\right)\Rightarrow N\in\left(AMN\right)\cap\left(SBD\right)\)

\(\left\{{}\begin{matrix}I\in SD\in\left(SBD\right)\\I\in\left(AMN\right)\end{matrix}\right.\) \(\Rightarrow IN=\left(SBD\right)\cap\left(AMN\right)\)

\(\Rightarrow\) 3 mặt phẳng (AMN), (SAC), (SBD) cắt nhau theo 3 giao tuyến phân biệt SO, AM, IN nên 3 đường thẳng này song song hoặc đồng quy

Mà SO cắt AM tại E \(\Rightarrow SO;AM;NI\) đồng quy tại E

Hay N;E;I thẳng hàng

M là trung điểm SC, O là trung điểm AC \(\Rightarrow\) E là trọng tâm tam giác SAC

\(\Rightarrow\dfrac{OE}{OS}=\dfrac{1}{3}\)

Theo giả thiết N là trọng tâm ABC \(\Rightarrow\dfrac{ON}{OB}=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{OE}{OS}=\dfrac{ON}{OB}\Rightarrow EN||SB\Rightarrow NI||SB\Rightarrow NI||\left(SBC\right)\)

NV
23 tháng 12 2022

c.

Do \(CF||AB\), áp dụng định lý Talet:

\(\dfrac{KF}{AK}=\dfrac{KC}{KB}=1\Rightarrow KF=AK\)

Do \(AD||BK\) \(\Rightarrow\dfrac{KN}{AN}=\dfrac{BK}{AD}=\dfrac{1}{2}\Rightarrow KN=\dfrac{1}{2}AN\)

\(\Rightarrow KN=\dfrac{1}{2}\left(AK-KN\right)\Rightarrow KN=\dfrac{1}{3}AK=\dfrac{1}{3}KF\)

\(\Rightarrow KF=3KN=3\left(NF-KF\right)\)

\(\Rightarrow KF=\dfrac{3}{4}NF\)

Theo giả thiết M, K lần lượt là trung điểm SC, BC \(\Rightarrow MK\) là đường trung bình tam giác SBC

\(\Rightarrow MK||SB\Rightarrow MK||IN\) (theo c/m câu b)

Áp dụng định lý Talet:

\(\dfrac{KM}{IN}=\dfrac{KF}{NF}=\dfrac{3}{4}\Rightarrow KM=\dfrac{3}{4}IN\)

\(\Rightarrow d\left(M;AF\right)=\dfrac{3}{4}d\left(I;AF\right)\)

\(\Rightarrow\dfrac{S_{\Delta FKM}}{S_{\Delta KAI}}=\dfrac{\dfrac{1}{2}.d\left(M;KF\right).KF}{\dfrac{1}{2}d\left(I;AK\right).AK}=\dfrac{3}{4}.1=\dfrac{3}{4}\)