Giải phương trình
a, \(\dfrac{\sqrt{x+1}}{\sqrt{x-1}}=2\)
b, \(\sqrt{\dfrac{x-1}{x+1}}=2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rút gọn biểu thức
a, B= sin4 a + cos4 a + 2sin2 a.cos2a (00 < a < 900)
giải chi tiết giúp mình với ạ
\(B=\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha\)
\(=\left(\sin^2\alpha+\cos\alpha^2\right)^2=1^2=1\)
C1: Giải bằng cách tính delta
C2: PT có dạng a-b+c=0
C3: Nhẩm nghiệm có 1 nghiệm là -1 dùng phép chia đ thức
\(PT\Leftrightarrow\left(x+1\right)\left(x+3\right)=0\)
The common method for the equation \(\sqrt{A}+\sqrt{B}=k\left(A,B,k\ge0\right)\) (k is a constant number) usually is raise each side of the equation to the power of 2:
\(\sqrt{A}+\sqrt{B}=k\) \(\Leftrightarrow\left(\sqrt{A}+\sqrt{B}\right)^2=k^2\) \(\Leftrightarrow A+B+2\sqrt{AB}=k^2\)\(\Leftrightarrow2\sqrt{AB}=k^2-A-B\)
And you raise each side of the equation to the power of 2 again: \(2\sqrt{AB}=k^2-A-B\Leftrightarrow\left(2\sqrt{AB}\right)^2=\left(k^2-A-B\right)^2\) \(\Leftrightarrow4AB=\left(k^2-A-B\right)^2\)
And now we have eliminate all of the square roots and make it easier to solve.
But, I will give you a new method to solve this type of the equation.
a) \(\sqrt{x}+\sqrt{2-x}=2\) \(\left(0\le x\le2\right)\)
We can easily find that \(x=1\). When \(x=1\), \(\left\{{}\begin{matrix}\sqrt{x}=1\\\sqrt{2-x}=1\end{matrix}\right.\). or \(\left\{{}\begin{matrix}\sqrt{x}-1=0\\\sqrt{2-x}-1=0\end{matrix}\right.\) So, we have to do something like this:
\(\sqrt{x}+\sqrt{2-x}=2\Leftrightarrow\left(\sqrt{x}-1\right)+\left(\sqrt{2-x}-1\right)=0\)
Notice that \(\sqrt{x}+1\ne0\) and \(\sqrt{2-x}+1\ne0\), we now can write the equation as below:
\(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}+\dfrac{\left(\sqrt{2-x}-1\right)\left(\sqrt{2-x}+1\right)}{\sqrt{2-x}+1}=0\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}\right)^2-1}{\sqrt{x}+1}+\dfrac{\left(\sqrt{2-x}\right)^2-1}{\sqrt{2-x}+1}=0\)
\(\Leftrightarrow\dfrac{x-1}{\sqrt{x}+1}+\dfrac{1-x}{\sqrt{2-x}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{\sqrt{2-x}+1}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(take\right)\\\dfrac{1}{\sqrt{x}+1}=\dfrac{1}{\sqrt{2-x}+1}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{x}=\sqrt{2-x}\Leftrightarrow x=1\)
Therefore, the equation a) has the root \(x=1\)
b) \(0\le x\le1\)
Notice that \(x\) can be either equal to 0 or 1
So consider \(x=1\). Then, we have \(\sqrt{x}=1\Leftrightarrow\sqrt{x}-1=0\) and \(\sqrt{1-x}=0\). Therefore, we have to rewrite the equation like this:
\(\sqrt{1-x}+\sqrt{x}=1\Leftrightarrow\dfrac{1-x}{\sqrt{1-x}}+\left(\sqrt{x}-1\right)=0\) \(\Leftrightarrow\dfrac{1-x}{\sqrt{1-x}}+\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=0\)
\(\Leftrightarrow\dfrac{1-x}{\sqrt{1-x}}+\dfrac{x-1}{\sqrt{x}+1}=0\) \(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{1-x}}-\dfrac{1}{\sqrt{x}+1}\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\left(take\right)\\\dfrac{1}{\sqrt{1-x}}=\dfrac{1}{\sqrt{x}+1}\end{matrix}\right.\)or \(\left[{}\begin{matrix}x=1\\\sqrt{1-x}=\sqrt{x}+1\left(\cdot\right)\end{matrix}\right.\)
And now, use the same method to solve \(\left(\cdot\right)\)
c) We have \(x\ge0\)
We can easily see that \(x=4\), so \(\sqrt{x+5}=3\Leftrightarrow\sqrt{x+5}-3=0\) and \(\sqrt{x}=2\Leftrightarrow\sqrt{x}-2=0\) . Therefore, we can rewrite the equation as below:
\(\sqrt{x+5}-\sqrt{x}=1\Leftrightarrow\left(\sqrt{x+5}-3\right)-\left(\sqrt{x}-2\right)=0\) \(\Leftrightarrow\dfrac{\left(\sqrt{x+5}-3\right)\left(\sqrt{x+5}+3\right)}{\sqrt{x+5}+3}+\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=0\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x+5}\right)^2-9}{\sqrt{x+5}+3}+\dfrac{\left(\sqrt{x}\right)^2-4}{\sqrt{x}+2}=0\)
\(\Leftrightarrow\dfrac{x-4}{\sqrt{x+5}+3}+\dfrac{x-4}{\sqrt{x}+2}=0\)
\(\Leftrightarrow\left(x-4\right)\left(\dfrac{1}{\sqrt{x+5}+3}+\dfrac{1}{\sqrt{x}+2}\right)=0\)
\(\Leftrightarrow...\)
Notice that \(\dfrac{1}{\sqrt{x+5}+3}+\dfrac{1}{\sqrt{x}+2}\) can't be equal to 0. So this equation only have the root \(x=4\)
d) Similar to the equations above.
Lời giải:
$x^2+2x=3-2\sqrt{3}$
$x^2+2x+1=4-2\sqrt{3}$
$(x+1)^2=4-2\sqrt{3}=(\sqrt{3}-1)^2$
$(x+1)^2-(\sqrt{3}-1)^2=0$
$(x+1-\sqrt{3}+1)(x+1+\sqrt{3}-1)=0$
$(x+2-\sqrt{3})(x+\sqrt{3})=0$
$\Rightarrow x+2-\sqrt{3}=0$ hoặc $x+\sqrt{3}=0$
$\Rightarrow x=\sqrt{3}-2$ hoặc $x=-\sqrt{3}$
a, \(\dfrac{\sqrt{x+1}}{\sqrt{x-1}}\) = 2 đk x >1
\(\sqrt{\dfrac{x+1}{x-1}}\) = 2
⇔ \(\dfrac{x+1}{x-1}\) = 4
⇔ x + 1 = 4x - 4
3x = 5
x =5/3
b, \(\sqrt{\dfrac{x-1}{x+1}}\) = 2 đk x ϵ { x ϵ R| x≤-1. x >1}
⇔ \(\dfrac{x-1}{x+1}\) = 4
⇔ x - 1 = 4x + 4
⇔ 3x = -5
x = -5/3