3 mũ x nhân 3 mũ x +5= 3 mũ x + 12
Tính giúp mik ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\sqrt{4+3\sqrt{4+3\sqrt{4+...}}}\)
\(S=\sqrt{4+3S}\)
\(S^2=4+3S\)
\(S^2-3S-4=0\)
\(\left(S+1\right)\left(S-4\right)=0\)
\(\Rightarrow S=4\) (do \(S>0\))
Bài 2:
a: \(\left|x+\dfrac{1}{5}\right|-\dfrac{1}{2}=\dfrac{9}{10}\)
=>\(\left|x+\dfrac{1}{5}\right|=\dfrac{1}{2}+\dfrac{9}{10}=\dfrac{14}{10}=\dfrac{7}{5}\)
=>\(\left[{}\begin{matrix}x+\dfrac{1}{5}=\dfrac{7}{5}\\x+\dfrac{1}{5}=-\dfrac{7}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\\x=-\dfrac{8}{5}\end{matrix}\right.\)
b: \(\dfrac{5}{4}-3\left|2x+5\right|=\dfrac{3}{4}\)
=>\(3\left|2x+5\right|=\dfrac{5}{4}-\dfrac{3}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)
=>\(\left|2x+5\right|=\dfrac{1}{6}\)
=>\(\left[{}\begin{matrix}2x+5=\dfrac{1}{6}\\2x+5=-\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{6}-5=-\dfrac{29}{6}\\2x=-\dfrac{1}{6}-5=-\dfrac{31}{6}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{29}{12}\\x=-\dfrac{31}{12}\end{matrix}\right.\)
c: \(\left(\dfrac{3}{5}x+\dfrac{1}{2}\right)^2=\dfrac{25}{16}\)
=>\(\left[{}\begin{matrix}\dfrac{3}{5}x+\dfrac{1}{2}=\dfrac{5}{4}\\\dfrac{3}{5}x+\dfrac{1}{2}=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{5}x=\dfrac{5}{4}-\dfrac{1}{2}=\dfrac{3}{4}\\\dfrac{3}{5}x=-\dfrac{5}{4}-\dfrac{1}{2}=-\dfrac{7}{4}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{3}{4}:\dfrac{3}{5}=\dfrac{5}{4}\\x=-\dfrac{7}{4}:\dfrac{3}{5}=-\dfrac{7}{4}\cdot\dfrac{5}{3}=-\dfrac{35}{12}\end{matrix}\right.\)
d: \(3-\left(2x+1\right)^2=2\)
=>\(\left(2x+1\right)^2=3-2=1\)
=>\(\left[{}\begin{matrix}2x+1=1\\2x+1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Bài 1:
a: \(\left(-\dfrac{2}{3}\right)^2\cdot\dfrac{9}{16}-\sqrt{\dfrac{4}{81}}:\dfrac{16}{9}+\left|-0,25\right|\)
\(=\dfrac{4}{9}\cdot\dfrac{9}{16}-\dfrac{2}{9}\cdot\dfrac{9}{16}+\dfrac{1}{4}\)
\(=\dfrac{4}{16}-\dfrac{2}{16}+\dfrac{1}{4}=\dfrac{1}{2}-\dfrac{1}{8}=\dfrac{3}{8}\)
b: \(\left(-2\right)^3+\dfrac{1}{2}:\dfrac{1}{8}-\sqrt{25}+\left|-8\right|\)
\(=-8+\dfrac{1}{2}\cdot8-5+8\)
=4-5=-1
c: \(\left(\dfrac{4}{3}-\dfrac{3}{2}\right)^2-2:\left|-\dfrac{1}{9}\right|+\dfrac{-5}{18}\)
\(=\left(\dfrac{8}{6}-\dfrac{9}{6}\right)^2-2:\dfrac{1}{9}-\dfrac{5}{18}\)
\(=\dfrac{1}{36}-18-\dfrac{5}{18}=\dfrac{1}{36}-\dfrac{10}{36}-18=-\dfrac{9}{36}-18\)
\(=-18-\dfrac{1}{4}=-18,25\)
d: \(\left(-\dfrac{3}{4}\right)^2:\left(-\dfrac{1}{4}\right)^2+9\left(\dfrac{1}{3}\right)^2+\left|-\dfrac{3}{2}\right|\)
\(=\left(-\dfrac{3}{4}:\dfrac{-1}{4}\right)^2+9\cdot\dfrac{1}{9}+\dfrac{3}{2}\)
\(=3^2+1+\dfrac{3}{2}=9+1+\dfrac{3}{2}=10+\dfrac{3}{2}=11,5\)
`A= (x+5)/(x+3 )`
Điều kiện: `x ≠ -3`
Do `x ∈ Z => x + 5` và `x + 3∈ Z`
Để `A ∈ Z <=> x + 5 ⋮x + 3`
`<=> x + 3 + 2 ⋮ x + 3`
Do `x + 3 ⋮ x + 3`
Nên `2 ⋮ x + 3`
`=> x + 3 ∈ Ư(2) =` {`-2;-1;1;2`}
`=> x ∈` {`-5;-4;-2;-1`} (Thỏa mãn)
Vậy ...
------------------------------
`B =(x-2)/(x+1)`
Điều kiện: `x ≠ -1`
Do `x ∈ Z => x -2` và `x + 1 ∈ Z`
Để `B ∈ Z <=> x -2 ⋮x + 1`
`<=> x + 1 - 3 ⋮x + 1`
Do `x + 1 ⋮x + 1`
Nên `3⋮x + 1`
`=> x + 1 ∈ Ư(3) =` {`-3;-1;1;3`}
`=> x ∈` {`-4;-2;0;2`} (Thỏa mãn)
Vậy ...
\(A=\dfrac{x+5}{x+3}\in Z\)
\(\Rightarrow\left(x+5\right)⋮\left(x+3\right)\)
Mà \(\left(x+3\right)⋮\left(x+3\right)\)
\(\Rightarrow\left(x+5\right)-\left(x+3\right)⋮\left(x+3\right)\)
\(\Rightarrow2⋮\left(x+3\right)\)
\(\Rightarrow\left(x+3\right)\inƯ\left(2\right)\)
\(\Rightarrow\left(x+3\right)\in\left\{1;-1;-2;2\right\}\)
Ta có bảng giá trị:
\(x+3\) | 1 | -1 | 2 | -2 |
\(x\) | -2 | -4 | -1 | -5 |
Vậy \(x\in\left\{-2;-4;-1;-5\right\}\)
Những câu còn lại, cách làm tương tự, nếu như còn thắc mắc thì bạn tag mình nhé.
d: \(\left|-5-\sqrt{2}\right|=5+\sqrt{2}\)
c: \(\left|4+\sqrt{3}\right|=4+\sqrt{3}\)
d: \(\left|-\dfrac{4}{15}\right|=\dfrac{4}{15}\)
a: \(\left|3,02\right|=3,02\)
a: \(\left|-\dfrac{1}{3}\right|-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)
\(=\dfrac{1}{3}-1+\dfrac{1}{4}:2=-\dfrac{2}{3}+\dfrac{1}{8}=\dfrac{-16}{24}+\dfrac{3}{24}=-\dfrac{13}{24}\)
b: \(\left(\dfrac{2}{3}\right)^3+\sqrt{\dfrac{49}{81}}-\left|-\dfrac{7}{3}\right|:3\)
\(=\dfrac{8}{27}+\dfrac{7}{9}-\dfrac{7}{3}\cdot\dfrac{1}{3}\)
\(=\dfrac{8}{27}+\dfrac{7}{9}-\dfrac{7}{9}=\dfrac{8}{27}\)
c: \(\sqrt{\dfrac{25}{49}}+\left(5555\right)^0+\left|-\dfrac{2}{7}\right|\)
\(=\dfrac{5}{7}+1+\dfrac{2}{7}\)
=1+1=2
a: \(\sqrt{50}>\sqrt{49}\)
mà \(\sqrt{49}=7\)
nên \(\sqrt{50}>7\)
b: \(\sqrt{27}>\sqrt{25}=5\)
=>\(\dfrac{4}{\sqrt{27}}< \dfrac{4}{5}\)
c: \(\dfrac{3}{\sqrt{7}}>1;\dfrac{\sqrt{7}}{3}< 1\)
Do đó: \(\dfrac{3}{\sqrt{7}}>\dfrac{\sqrt{7}}{3}\)
Bài 2:
a:
\(-4,4\left(9\right)-5,8\left(1\right)\simeq-4,5-5,8=-10,3\)
\(-4,4\left(9\right)-5,8\left(1\right)\)
\(=-\dfrac{9}{2}-\dfrac{-523}{90}=-\dfrac{9}{2}+\dfrac{523}{90}=\dfrac{118}{90}=\dfrac{59}{45}\)
b:
\(-12,\left(7\right)\cdot3,\left(12\right)\simeq-12,8\cdot3,1\simeq-40\)
\(-12,\left(7\right)\cdot3,\left(12\right)\)
\(=-\dfrac{115}{9}\cdot\dfrac{103}{33}=\dfrac{11845}{297}\)
c: \(9,\left(49\right):\left[-5,\left(09\right)\right]\simeq9,5:\left(-5,1\right)\simeq-1,9\)
\(9,\left(49\right):\left[-5,\left(09\right)\right]\)
\(=\dfrac{940}{99}:\dfrac{-56}{11}=\dfrac{940}{99}\cdot\dfrac{11}{-56}\)
\(=\dfrac{940}{-56}\cdot\dfrac{1}{9}=-\dfrac{235}{14\cdot9}=-\dfrac{235}{126}\)
Bài 1:
a: \(9,4\simeq9\)
b: \(3,51\simeq4\)
c: \(-7,505\simeq-8\)
d: \(-1.199\simeq-1\)
Sửa đề: \(\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{2^{12}\cdot9^6+8\cdot9^5}\)
\(=\dfrac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^{12}+2^3\cdot3^{10}}\)
\(=\dfrac{2^{12}\cdot3^4\left(3-1\right)}{2^3\cdot3^{10}\left(2^9\cdot3^2+1\right)}\)
\(=\dfrac{2^9}{3^6}\cdot\dfrac{2}{1028\cdot9+1}=\dfrac{2^{10}}{729\left(1028\cdot9+1\right)}\)
\(3^x.3^{x+5}=3^{x+12}\)
\(3^{x+x+5}=3^{x+12}\)
\(3^{2x+5}=3^{x+12}\)
\(2x+5=x+12\)
\(2x-x=12-5\)
\(x=7\)