K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2020

ta sẽ chứng minh với mọi x,y luôn có \(\frac{x+y}{2}\cdot\frac{x^3+y^3}{2}\le\frac{x^4+y^4}{2}\)(*)

thật vậy, (*) tương đương với \(\left(x+y\right)\left(x^3+y^3\right)\le2\left(x^4+y^4\right)\Leftrightarrow xy\left(x^2+y^2\right)\le x^4+y^4\)

\(\Leftrightarrow\left(x-y\right)^2\left[\left(\frac{x+y}{2}\right)^2+\frac{3y^2}{4}\right]\ge0\), luôn đúng

khi đó áp dụng (*) ta được

\(\frac{a+b}{2}\cdot\frac{a^2+b^2}{2}\cdot\frac{a^3+b^3}{2}=\left[\frac{a+b}{2}\cdot\frac{a^3+b^3}{2}\right]\cdot\frac{a^2+b^2}{2}\le\frac{a^4+b^4}{2}\cdot\frac{a^2+b^2}{2}\le\frac{a^6+b^6}{2}\)(đpcm)

dấu đẳng thức xảy ra khi và chỉ khi a=b

8 tháng 8 2020

\(\left(\frac{-1}{3}\right)^4=\frac{\left(-1\right)^4}{3^4}=\frac{1}{81}\)

\(\left(-2\frac{1}{4}\right)^3=\left(\frac{-9}{4}\right)^3=\frac{-729}{64}\)

\(\left(-0,2\right)^2=0,04\)

\(\left(-5,3\right)^0=1\)

10 tháng 8 2020

Do:    \(A+B=0\)

=> \(-3x^5y^3+2x^2y^4=0\)

=> \(3x^5y^3-2x^2y^4=0\)

=> \(x^2y^3\left(3x-2y\right)=0\)

=> x=0 hoặc y=0 hoặc   \(x=\frac{2y}{3}\)

Vậy x=0 hoặc y=0 hoặc     \(x=\frac{2y}{3}\)thì \(A+B=0\)

8 tháng 8 2020

Ta có :

\(43^4+43^5\)

\(=43^4\left(1+43\right)\)

\(=43^4.44⋮44\)

Vậy \(43^4+43^5⋮44\).

Học tốt

\(43^4+43^5\)

\(=43^4\left(1+43\right)\)

\(=43^4.44⋮44\)

\(\Rightarrow\)\(43^4+43^5⋮44\)

8 tháng 8 2020

Bài làm:

Ta có: \(43^4+43^5\)

\(=43^4\left(1+43\right)\)

\(=43^4.44⋮44\)

=> đpcm

8 tháng 8 2020

Ta có : 434 + 435 = 434(1 + 43) = 434.44 \(⋮\)44

=> 434 + 435 \(⋮\)44 (đpcm)

9 tháng 8 2020

1

a) trước tiên chứng minh\(\widehat{ABM}=\widehat{ACN}\)

rồi mới chứng minh 2 tam giác ABM và ACN bằng nhau 

suy ra AM = AN 

b)Đầu tiên chứng minh\(\widehat{ABH}=\widehat{ACK}\)

rồi chứng minh hai tam giác ABH và ACK bằng nhau

suy ra BH = CK

c) vì hai tam giác ABH và ACK bằng nhau (cmt)

nên AH = AK

d) ta có \(\widehat{AMB}=\widehat{ACN}\)(hai tam giác ABH và ACK bằng nhau)

nên dễ cm \(\widehat{MBH}=\widehat{NCK}\)

còn lại tự cm

e) dễ cm tam giác ABC đều 

vẽ \(BH\perp AC\)

nên BH vừa là đường cao; phân giác và trung tuyến

dễ cm \(\Delta BHC=\Delta NKC\)

nên \(\widehat{BCH}=\widehat{NCK}=60^0\)

từ đó dễ cm AMN cân và OBC dều

8 tháng 8 2020

Bài làm:

Áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}=\frac{5\left(a+b+c\right)}{a+b+c}=5\)

\(\Rightarrow\hept{\begin{cases}3a+b+c=5a\\a+3b+c=5b\\a+b+3c=5c\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b+c=3a\\a+b+c=3b\\a+b+c=3c\end{cases}}\Rightarrow a=b=c\)

Vậy \(P=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\frac{2c}{c}+\frac{2a}{a}+\frac{2b}{b}=2+2+2=6\)

Vậy P = 6

8 tháng 8 2020

Vì a ; b ; c > 0 => a + b + c > 0

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}=\frac{3a+b+c+a+3b+c+a+b+3c}{a+b+c}\)

                                                                                       \(=\frac{5\left(a+b+c\right)}{a+b+c}=5\)

\(\Rightarrow\hept{\begin{cases}3a+b+c=5a\\a+3b+c=5b\\a+b+3c=5c\end{cases}}\Rightarrow\hept{\begin{cases}b+c=2a\\a+c=2b\\a+b=2c\end{cases}}\)

Khi đó P = \(\frac{2c}{c}+\frac{2a}{a}+\frac{2b}{b}=2+2+2=6\)