Tính
1. (-8)^2=
2. (-1.25)^2=2
3.3^5=
4.2^5÷2^3=
5. (-4)^2×(-4)
6. (2/3)^3×(2/3)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm :
+ Cho n hạt thóc vào ống nghiệm chia độ rồi thả vào bình hình trụ chứa nước , xác định xem ống nghiệm chìm đến vạch nào của vạch chia độ .
+ Vớt ống nghiệm ra và đổ hết thóc ra rồi đổ dần nước vào ống nghiệm cho ống nghiệm chìm đến vạch cũ .
+ Xác định thể tích nước V trong ống nghiệm .
+ Tính khối lượng nước m=Dn.V chính là khối lượng của n hạt thóc .
+ Khối lượng trung bình của 1 hạt thóc :
\(m_0=\frac{m}{n}\)
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Sửa đề : \(\left(-\frac{4}{3}\right)^n.\left(\frac{16}{9}\right)^2=\left(-\frac{64}{27}\right)^2\)
=> \(\left(-\frac{4}{3}\right)^n.\left[\left(-\frac{4}{3}\right)^2\right]^2=\left[\left(-\frac{4}{3}\right)^3\right]^2\)
=> \(\left(-\frac{4}{3}\right)^n.\left(-\frac{4}{3}\right)^4=\left(-\frac{4}{3}\right)^6\)
=> \(\left(-\frac{4}{3}\right)^n=\left(-\frac{4}{3}\right)^2\)
=> n = 2
\(\left(\frac{-3}{5}\right)^n:\left(\frac{9}{25}\right)^3=-\frac{3}{5}\)
=> \(\left(-\frac{3}{5}\right)^n:\left[\left(-\frac{3}{5}\right)^2\right]^3=-\frac{3}{5}\)
=> \(\left(-\frac{3}{5}\right)^n:\left(-\frac{3}{5}\right)^6=-\frac{3}{5}\)
=> \(\left(-\frac{3}{5}\right)^n=\left(-\frac{3}{5}\right)^7\)
=> n = 7
\(\frac{\left(-\frac{3}{5}\right)^n}{\left(\frac{9}{25}\right)^n}=-\frac{3}{5}\)
\(\left(-\frac{\frac{3}{5}}{\frac{9}{25}}\right)^n=-\frac{3}{5}\)
\(-\left(\frac{5}{3}\right)^n=-\frac{3}{5}\)
\(\left(\frac{5}{3}\right)^n=\frac{3}{5}\)
Vậy n = -1
Ta có : 2516 = (52)16 = 532 = (54)8 = 6258
Lại có 624 = (63)8 = 2168
Vì 6258 > 2168
=> 2516 > 624
+) \(2x\left(x-4\right)-x\left(2x+3\right)+22=0\)
\(\Leftrightarrow2x^2-8x-2x^2-3x+22=0\)
\(\Leftrightarrow-11x+22=0\)
\(\Leftrightarrow-11\left(x-2\right)=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
+) \(\left(2x+3\right)\left(3x+2\right)+2\left(1-3x\right)\left(x+\frac{1}{2}\right)=1\)
\(\Leftrightarrow6x^2+4x+9x+6+\left(2-6x\right)\left(x+\frac{1}{2}\right)=1\)
\(\Leftrightarrow6x^2+13x+6+2x+1-6x^2-3x=1\)
\(\Leftrightarrow12x+7=1\)
\(\Leftrightarrow x=\frac{-1}{2}\)
2x( x - 4 ) - x( 2x + 3 ) + 22 = 0
<=> 2x2 - 8x - 2x2 - 3x + 22 = 0
<=> -11x + 22 = 0
<=> -11x = -22
<=> x = 2
( 2x + 3 )( 3x + 2 ) + 2( 1 - 3x )( x + 1/2 ) = 1
<=> 6x2 + 13x + 6 + 2( -3x2 - 1/2x + 1/2 ) = 1
<=> 6x2 + 13x + 6 - 6x2 - x + 1 = 1
<=> 12x + 7 = 1
<=> 12x = -6
<=> x = -6/12 = -1/2
Bài 2 :
a) \(A=3,7+\left|4,3-x\right|\ge3,7\)
Min A = 3,7 \(\Leftrightarrow x=4,3\)
b) \(B=\left|3x+8,4\right|-14\ge-14\)
Min B = -14 \(\Leftrightarrow x=\frac{-14}{5}\)
c) \(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Min C = 17,5 \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{-3}{2}\end{cases}}\)
d) \(D=\left|x-2018\right|+\left|x-2017\right|\)
\(D=\left|2018-x\right|+\left|x-2017\right|\ge\left|2018-x+x-2017\right|=1\)
Min D =1 \(\Leftrightarrow\left(2018-x\right)\left(x-2017\right)\ge0\)
\(\Leftrightarrow2017\le x\le2018\)
\(A=3,7+\left|4,3-x\right|\)
Ta có \(\left|4,3-x\right|\ge0\Leftrightarrow A=3,7+\left|4,3-x\right|\ge3,7\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left|4,3-x\right|=0\Leftrightarrow4,3-x=0\Leftrightarrow x=4,3\)
\(B=\left|3x+8,4\right|-14\)
Ta có \(\left|3x+8,4\right|\ge0\Leftrightarrow B=\left|3x+8,4\right|-14\ge-14\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left|3x+8,4\right|=0\Leftrightarrow3x=-8,4\Leftrightarrow x=2,8\)
\(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
Ta có \(\hept{\begin{cases}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{cases}}\Leftrightarrow C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Dấu '' = '' xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)
\(D=\left|x-2018\right|+\left|x-2017\right|\)
\(\Leftrightarrow D=\left|x-2018\right|+\left|2017-x\right|\)
Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)ta có
\(D\ge\left|x-2018+2017-x\right|=\left|-1\right|=1\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left(2017-x\right)\left(x-2018\right)\ge0\Leftrightarrow2018\ge x\ge2017\)
a) xét \(\Delta AOM\)và \(\Delta BOM\)có
\(AO=BO\left(gt\right);\widehat{AOM}=\widehat{BOM}\left(gt\right);\)OM là cạnh chung
=>\(\Delta AOM\)=\(\Delta BOM\)(c-g-c)
=> AM = BM (hai cạnh tương ứng )
=> M là trung điểm của AB
b) vì AO = BO
=> \(\Delta ABO\)là tam giác cân
vì OM là phân giác của AB
=> OM vừa là đường cao của tam giác ABC
=> \(OM\perp AB\left(đpcm\right)\)
1)\(\left(-8\right)^2=64\)
2)\(\left(-1,25\right)^2=1,56\)
3) \(3^5=243\)
4) \(2^5:2^3\Leftrightarrow2^{5-3}=2^2\)
5) \(\left(-4\right)^2\times\left(-4\right)=\left(-4\right)^{2+1}=\left(-4\right)^3\)
6) \(\left(\frac{2}{3}\right)^3\times\left(\frac{2}{3}\right)^2=\left(\frac{2}{3}\right)^{3+2}=\left(\frac{2}{3}\right)^5\)
6,1. = 64
2 . = 1,56
3 . =243
4 , = 22 = 4
5 , (-43) = -12
6, = 2/3 5 = 22 / 213