Từ số 038307027167 hãy viết tập A có 5 chữ số khác nhau chia hết cho 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(tan45^o=\dfrac{CD-1,8}{10}\) (CD là chiều cao cây bàng)
\(\Rightarrow CD-1,8=10.tan45^o\)
\(\Rightarrow CD=10.1+1,8=11,8\left(m\right)\)
Áp dụng BĐT Cauchy cho cặp số dương \(\dfrac{1}{\left(z+x\right)};\dfrac{1}{\left(z+y\right)}\)
\(\dfrac{1}{\left(z+x\right)}+\dfrac{1}{\left(z+y\right)}\ge\dfrac{1}{2}.\dfrac{1}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\)
\(\Rightarrow\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\left(1\right)\)
Tương tự ta được
\(\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}\le\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}\left(2\right)\)
\(\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\left(3\right)\)
\(\left(1\right)+\left(2\right)+\left(3\right)\) ta được :
\(P=\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}+\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}+\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\)
\(\Rightarrow P\le2\left(x+y+z\right)=2.3=6\)
\(\Rightarrow GTLN\left(P\right)=6\left(tạix=y=z=1\right)\)
Công thức Heron được áp dụng cho tất cả tam giác nên nó cũng được áp dụng cho tam giác tù hoặc vuông.
\(\left\{{}\begin{matrix}A\subset X\\X\subset B\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}X=\left\{1;2;3;4\right\}\\X=\left\{1;2;3;4;5\right\}\\X=\left\{1;2;3;4;5;6\right\}\\X=\left\{1;2;3;4;5;6;7\right\}\end{matrix}\right.\)
x ϵ {1;2;3;4}
x ϵ {1;2;3;4;5}
x ϵ {1;2;3;4;5;6}
x ϵ {1;2;3;4;5;6;7}
A = \(\left\{16780\right\}\)
{16780}