K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2019

bình phương 2 lần, tìm điều kiện phát sinh, giải phương trình bậc 2, đối chiếu và kết luận

11 tháng 2 2019

n là số nguyên dương,\

G/s: n(n+1)(n+2) là số chính phương (1)

Ta luôn có: (n,n+1)=1 và (n+1, n+2)=1 (2)

+) TH1: n lẻ

khi đó: (n, n+2)=1 (3)

( chứng minh: đặt (n, n+2)=d => n , n+2 chia hế cho d=> 2 chia hết cho d và vì n lẻ=> n =1)

Từ (1), (2) , (3) ta có thể đặt: n=a^2, n+1=b^2, n+2=c^2 với a, b, c là số nguyên 

=> b^2-a^2=1=> (b-a)(b+a)=1 => a=0 => n=0 loại

+) TH2: n chẵn

Đặt n=2k 

=> 2k(2k+1)(2k+2)=4k(2k+1)(k+1) là số chính phương 

=> k(2k+1)(k+1) là số chính phương

Tương tự thì chứng minh đc : (k, 2k+1)=1, (2k+1, k+1)=1 , (k+1, k)=1

=> Có thể đẳh k=a^2, k+1=b^2  tương tự như trên trường hợp nÀY CŨNG bị loại

nick tui: Edtỳch

11 tháng 2 2019

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

11 tháng 2 2019

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{z}{\left(x+y+z\right).z}-\frac{x+y+z}{z.\left(x+y+z\right)}=\frac{-x-y}{z.\left(x+y+z\right)}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{x+y}{-z.\left(x+y+z\right)}\)

TH1: x+y=0

=> x=-y => P=0

TH2: xy=-z.(x+y+z)

\(\Leftrightarrow xy=-xz-zy-z^2\Leftrightarrow xy+xz+zy+z^2=0\Leftrightarrow x.\left(y+z\right)+z.\left(y+z\right)=0\)

\(\Leftrightarrow\left(x+z\right).\left(y+z\right)=0\Leftrightarrow\orbr{\begin{cases}x=-z\\y=-z\end{cases}\Rightarrow P=0}\)

\(\frac{1}{\sqrt{2}+1}-\sqrt{2}=\frac{1-\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)

\(=\frac{1-2-\sqrt{2}}{\sqrt{2}+1}\)

\(=\frac{-1-\sqrt{2}}{\sqrt{2}+1}=\frac{-1\left(1+\sqrt{2}\right)}{\sqrt{2}+1}=-1\)

11 tháng 2 2019

ad ở olm này là ai 

mn trả lời jup ạ

11 tháng 2 2019

Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.