cho bt :
B=\(\left[\dfrac{\left(x-1\right)\sqrt{x-1}+x-3}{x-2}-\dfrac{1}{\sqrt{x-1}+1}\right]:\dfrac{1}{\left(x-1\right)\sqrt{x}-1-x+1}\)
a, Rút gọn B
b,Tính giá trị của B khi x=\(\sqrt{7+4\sqrt{3}}-\left(\sqrt{5}+1\right)\sqrt{7-4\sqrt{3}}+\sqrt{5}|\sqrt{3-2}|\)
Ta có: \(đk.x\ne2;x>1\)
\(\dfrac{\left(x-1\right)\sqrt{x-1}+x-3}{x-2}-\dfrac{1}{\sqrt{x-1}+1}\)
\(=\dfrac{\left(x-1\right)\sqrt{x-1}+x-3}{x-2}-\dfrac{\sqrt{x-1}-1}{(\sqrt{x-1}+1)\left(\sqrt{x-1}-1\right)}\)
\(=\dfrac{\left(x-1\right)\sqrt{x-1}+x-3}{x-2}-\dfrac{\sqrt{x-1}-1}{x-2}\)
\(=\dfrac{\left(x-2\right)\sqrt{x-1}+x-2}{x-2}\)
\(=\dfrac{\left(x-2\right)(\sqrt{x-1}+1)}{x-2}=\sqrt{x-1}+1\)
\(\dfrac{1}{\left(x-1\right)\sqrt{x-1}-x+1}=\dfrac{1}{\left(x-1\right)\left(\sqrt{x-1}-1\right)}\)
Suy ra :
\(B=(\sqrt{x-1}+1):\dfrac{1}{(x-1)\left(\sqrt{x-1}-1\right)}\)
\(=\left(\sqrt{x-1}+1\right)\left(x-1\right)\left(\sqrt{x-1}-1\right)\)
\(=\left(x-2\right)\left(x-1\right)\)
b.
Ta có: \(7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)
\(7-4\sqrt{3}=\left(2-\sqrt{3}\right)^2\)
\(\left|\sqrt{3-2}\right|=\left|1\right|=\pm1\)
Khai căn, bỏ dấu giá trị tuyệt đối rút gọn x rồi thay vào biểu thức B đã rút gọn để tính giá trị.