Cho tam giác ABC cân tại A, AB= 4cm. Góc BAC = 120 độ. Tìm tâm và bán kính đường tròn ngoại tiếp tam giác ABC?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này đkxđ thế nào nhỉ? Em làm ko ra:( nếu x>=-3 không thì chưa đủ vì còn cần vế trái >=0
ĐKXĐ: \(x\ge-3\). Dễ thấy \(\sqrt{\frac{x+3}{2}}\ge0\Rightarrow2x^2+4x\ge0\Leftrightarrow x\left(x+2\right)\ge0\Leftrightarrow\orbr{\begin{cases}x\ge0\\x\le-2\end{cases}}\)
Kết hợp lại ta được : \(\orbr{\begin{cases}x\ge0\\-3\le x\le-2\end{cases}.}\)
Đặt \(\sqrt{\frac{x+3}{2}}=a+1>0\Leftrightarrow2\left(a+1\right)^2=x+3\Leftrightarrow2a^2+4a+2=x+3\Leftrightarrow2a^2+4a=x+1\)
Khi đó phương trình đã cho tương đương với:
\(\hept{\begin{cases}2x^2+4x=a+1\\2a^2+4a=x+1\end{cases}}\Rightarrow2\left(x^2-a^2\right)+4\left(x-a\right)=a-x\)
\(\Leftrightarrow\left(x-a\right)\left(2x+2a+4+1\right)=0\)
\(\Leftrightarrow\left(x-a\right)\left(2x+2a+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-a=0\\2a+2x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x-\left(a+1\right)+1=0\\2\left(a+1\right)+2x+3=0\end{cases}.}\)
Với \(2\left(a+1\right)+2x+3=0\)
\(\Leftrightarrow2\sqrt{\frac{x+3}{2}}+2x+3=0\Leftrightarrow\sqrt{\frac{x+3}{2}}=\frac{-\left(2x+3\right)}{2}\)
\(\Rightarrow\frac{x+3}{2}=\frac{4x^2+12x+9}{4}\Leftrightarrow4x^2+10x+3=0\)
\(\Delta^'=5^2-4.3=13>0\)
\(\Rightarrow x_1=\frac{-5+\sqrt{13}}{4}\)(loại vì không TMĐK )
\(x_2=\frac{-5-\sqrt{13}}{4}\left(tm\right)\)Thử lại x2 ta thấy thỏa mãn phương trình đã cho.
Với \(x-\left(a+1\right)+1=0\)
\(\Leftrightarrow x-\sqrt{\frac{x+3}{2}}+1=0\Leftrightarrow\sqrt{\frac{x+3}{2}}=x+1\Rightarrow\frac{x+3}{2}=x^2+2x+1\Leftrightarrow2x^2+3x-1=0\)
\(\Delta^'_2=3^2-4.2\left(-1\right)=17>0\)
\(\Rightarrow x_3=\frac{-3+\sqrt{17}}{4}\left(tmđk\right)\)Thử lại ta thấy x3 thỏa mãn phương trình đã cho.
\(x_4=\frac{-3-\sqrt{17}}{4}\)(loại).
Vậy tập nghiệm của phương trình đã cho là \(S=\left\{\frac{-5-\sqrt{13}}{4};\frac{-3+\sqrt{17}}{4}\right\}.\)
ĐK \(x>-\frac{4}{5}\)
PT
<=> \(x^2+5x+4=\left(\frac{4}{3}.x+2\right)\sqrt{5x+4}\)
<=> \(3x^2+15x+12=2\left(2x+3\right)\sqrt{5x+4}\)
<=>\(2\left(2x+3\right)\left(x+2-\sqrt{5x+4}\right)-x^2+x=0\)
<=> \(2\left(2x+3\right).\frac{x^2+4x+4-5x-4}{x+2+\sqrt{5x+4}}-\left(x^2-x\right)=0\)
<=> \(2\left(2x+3\right).\frac{x^2-x}{x+2+\sqrt{5x+4}}-\left(x^2-x\right)=0\)
<=> \(\orbr{\begin{cases}x^2-x=0\left(1\right)\\\frac{4x+6}{x+2+\sqrt{5x+4}}=1\left(2\right)\end{cases}}\)
Giải (2)
\(3x+4=\sqrt{5x+4}\)
<=> \(9x^2+19x+12=0\)vô nghiệm
Giải (1)
=> \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)thỏa mãn ĐKXĐ
Vậy \(S=\left\{0;1\right\}\)
Trả lời
đưa căn 7x+2 sang vế bên phải rồi mũ 3 lên là đc mầ
hok tốt
ĐKXĐ: x > -2/7
Đặt \(\hept{\begin{cases}\sqrt[3]{2x-1}=a\\\sqrt{7x+2}=b\ge0\end{cases}}\Rightarrow7a^3-2b^2=14x-7-14x-4=-11\)
Từ đề bài \(\Rightarrow4a-b=1\)
Ta có hệ \(\hept{\begin{cases}7a^3-2b^2=-11\\4a-b=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}7a^3-2b^2=-11\\b=4a-1\end{cases}}\)
\(\Rightarrow7a^3-2\left(4a-1\right)^2=-11\)
\(\Leftrightarrow\left(a-1\right)\left(7a^2-25a-9\right)=0\)
Đến đây tìm được a => x
ĐKXĐ \(\orbr{\begin{cases}x\le1\\x\ge\frac{3}{2}\end{cases}}\)và \(-3x^2+9x-5\ge0\)
Theo bất đẳng thức cosi ta có
\(\sqrt{\left(2x^2-5x+3\right).1}\le\frac{2x^2-5x+4}{2}\)
\(\sqrt{\left(-3x^2+9x-5\right).1}\le\frac{-3x^2-9x-4}{2}\)
=> \(VT\le\frac{-x^2+4x}{2}=\frac{-\left(x-2\right)^2+4}{2}\le2\)
Mà \(VT=\left(x-2\right)^2+2\ge2\)
Dấu bằng xảy ra khi x=2 (thỏa mãn ĐKXĐ)
Vậy x=2
Xét \(\Delta HAC\)vuông tại H có HN là đường trung tuyến ứng với cạnh huyền
=> HN = NC = NA = AC/2
=> AC = 2HN = 8
Tương tự AB = 6
Theo hệ thức lượng trong tam giác vuông cho tam giác ABC vuông tại A có AH là đường cao thì
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
\(\Leftrightarrow\frac{1}{AH^2}=\frac{1}{6^2}+\frac{1}{8^2}\)
\(\Leftrightarrow\frac{1}{AH^2}=\frac{25}{576}\)
\(\Leftrightarrow AH=\frac{24}{5}\)
Áp dụng định lí Pytago vào \(\Delta HAC\)vuông tại H có
\(HA^2+HC^2=AC^2\)
\(\Leftrightarrow\left(\frac{24}{5}\right)^2+HC^2=8^2\)
\(\Leftrightarrow HC=\frac{32}{5}\)
Tương tự \(HB=\frac{18}{5}\)
Gọi đường tròn (O; R) là đường tròn ngoại tiếp tam giác ABC.
Kẻ đường kính AO cắt (O) tại D.
Hai tam giác vuông ABH và ADC có ∠ABH =∠ADC (cùng chắn cung AC) nên chúng đồng dạng.
=>ABAD=AHAC=>ABAD=AHAC
=>AD=AB⋅ACAH=6⋅103=20(cm)=>AD=AB⋅ACAH=6⋅103=20(cm)
Do đó, R=AD2=202=10(cm)
P.s:Ko chắc