\(\text{Với x,y,z là các số thực dương thay đổi và thỏa mãn 1/x+1/y+1/z=3. Tìm giá trị lớn nhất của biểu thức}:P=\frac{1}{\sqrt{2x^2+y^2+3}}+\frac{1}{\sqrt{2y^2+z^2+3}}+\frac{1}{\sqrt{2z^2+x^2+3}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://diendantoanhoc.net/topic/182493-%C4%91%E1%BB%81-thi-tuy%E1%BB%83n-sinh-v%C3%A0o-l%E1%BB%9Bp-10-%C4%91hsp-h%C3%A0-n%E1%BB%99i-n%C4%83m-2018-v%C3%B2ng-2/
bài này năm trrong đề thi tuyển sinh vào lớp 10 ĐHSP Hà Nội Năm 2018 (vòng 2) bn có thể tìm đáp án trên mạng để tham khảo
một hình chữ nhật có chiều rộng là 1/3 mét, chiều dài gấp 5 lần chiều rộng. Tính chu vi và diện tích hình chữ nhật đó.
\(\frac{x^2-\sqrt{2}}{x^4+x^2\sqrt{3}-x^2\sqrt{2}-\sqrt{6}}\)
\(=\frac{x^2-\sqrt{2}}{x^2\left(x^2-\sqrt{2}\right)+\sqrt{3}\left(x^2-\sqrt{2}\right)}\)
\(=\frac{x^2-\sqrt{2}}{\left(x^2-\sqrt{2}\right)\left(x^2+\sqrt{3}\right)}\)
\(=\frac{1}{x^2+\sqrt{3}}\)
Vì \(x^2+\sqrt{3}\ge\sqrt{3}\)với \(\forall x\)\(\Rightarrow\frac{1}{x^2+\sqrt{3}}\le\frac{1}{\sqrt{3}}\)\(\Leftrightarrow x=0\)
\(\Rightarrow\)Giá trị lớn nhất của biểu thức là \(\frac{1}{\sqrt{3}}\Leftrightarrow x=0\)
Ta chứng minh bất đẳng thức sau: \(\left(x+y\right)^2\le2\left(x^2+y^2\right).\)
Biến đổi tương đương ta có; \(x^2+2xy+y^2\le x^2+y^2+x^2+y^2\)
\(\Leftrightarrow2xy\le x^2+y^2\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)
Vì bất đẳng thức cuối luôn đúng với mọi x, y nên bất đẳng thức cần chứng minh đúng
Áp dụng bất đẳng thức trên ta có:
\(\left(x+y\right)^2\le2\left(x^2+y^2\right)=2.1=2\)( \(x^2+y^2=1\)theo giả thiết )
\(\Leftrightarrow\left(x+y\right)^2\le2\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}.\)
Và một cách nữa!
Đặt \(x+y=t\Rightarrow y=t-x\).
Khi đó \(1=x^2+\left(t-x\right)^2=2x^2+2tx+t^2\) (1)
Viết lại (1) thành phương trình bậc hai đối với x: \(2x^2+2tx+\left(t^2-1\right)=0\) (*)
(*) có nghiệm hay: \(\Delta'=t^2-2\left(t^2-1\right)\ge0\Leftrightarrow t^2\le2\)
Hay \(-\sqrt{2}\le t\le\sqrt{2}\) Hay ta có đpcm.
P/s: Đúng ko ạ?:3
#)Giải :
Ta có : \(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\left(1\right)\)
\(\frac{1}{y}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\left(2\right)\)
\(\frac{1}{x}+\frac{1}{z}\ge\frac{2}{\sqrt{xz}}\left(3\right)\)
Cộng (1),(2),(3) vế theo vế ta được :
\(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge2\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\left(đpcm\right)\)
Ta thấy : \(\left(x-y\right)^2\ge0\)\(\Rightarrow x^2+y^2\ge2xy\)
Mà : \(x^2+y^2=1\)\(\Rightarrow2xy\le1\)
\(\Rightarrow x^2+y^2+2xy\le1+1\)
\(\Rightarrow\left(x+y\right)^2\le2\)
\(\Leftrightarrow|x+y|\le\sqrt{2}\)
\(\Rightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)\(\left(đpcm\right)\)
\(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\sqrt{n+1}-\sqrt{n}\)
áp dụng vào tính ta được:
biểu thức cần tính: \(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+......+\sqrt{100}-\sqrt{99}=\sqrt{100}-\sqrt{1}\)
\(=10-1=9\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+..+\sqrt{100}\) \(-\sqrt{99}\)
\(=-\sqrt{1}+\sqrt{100}\)
\(=-1+10=9\)
chúc bn học tốt
Trong tam giác ABC, gọi giao điểm đường phân giác của góc ABC với cạnh AC là E.
Theo đề ra, ta có:
\(AE=\frac{30}{7}m;EC=\frac{40}{7}m.\)
Theo tính chất đường phân giác, ta có: \(\frac{AE}{EC}=\frac{AB}{BC}\)
\(\Rightarrow\frac{AB}{BC}=\frac{4\frac{2}{7}}{5\frac{5}{7}}=\frac{\frac{30}{7}}{\frac{40}{7}}=\frac{3}{4}\)
\(\Rightarrow\frac{AB}{3}=\frac{BC}{4}\Rightarrow\frac{AB^2}{9}=\frac{BC}{16}^2\)
Áp dụng định lý Pitago vào tam giác vuông ABC, ta có:
\(AC^2=AB^2+BC^2\)
Mà \(AC=AE+EC\) nên:
\(AB^2+BC^2=\left(AE+EC\right)^2\)
\(=\left(4\frac{2}{7}+5\frac{5}{7}\right)^2=\left(\frac{30}{7}+\frac{40}{7}\right)^2=10^2=100\)
Mà:
\(\frac{AB^2}{9}=\frac{BC^2}{16}=\frac{AB^2+BC^2}{9+16}=\frac{AB^2+BC^2}{25}=\frac{100}{25}=4\)
\(\Rightarrow AB^2=9.4=36\Rightarrow AB=\sqrt{36}=6\left(m\right)\)
\(\Rightarrow BC^2=16.4=64\Rightarrow BC=\sqrt{64}=8\left(m\right)\)
Vậy AB = CD = 6 (m)
BC = AD = 8 (m)
Ta có \(\left(2x^2+y^2+3\right)\left(2+1+3\right)\ge\left(2x+y+3\right)^2\)
=> \(\frac{1}{\sqrt{2x^2+y^2+3}}\le\frac{\sqrt{6}}{2x+y+3}\)
Mà \(\frac{1}{2x+y+3}=\frac{1}{x+x+y+1+1+1}\le\frac{1}{36}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+3\right)\)
=> \(\frac{1}{\sqrt{2x^2+y^2+3}}\le\frac{\sqrt{6}}{36}\left(\frac{2}{x}+\frac{1}{y}+3\right)\)
Khi đó
\(P\le\frac{\sqrt{6}}{36}\left(\frac{3}{x}+\frac{3}{y}+\frac{3}{z}+9\right)=\frac{\sqrt{6}}{36}.18=\frac{\sqrt{6}}{2}\)
Dấu bằng xảy ra khi x=y=z=1
Vậy \(MaxP=\frac{\sqrt{6}}{2}\)khi x=y=z=1
dễ vãi mà ko giải đc NGU