K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

\(x^7-1\)

\(=x^7-1^7\)

\(=\left(x-1\right)\left(x^6+x^5+x^4+x^3+x^2+x+1\right)\)

1 tháng 3 2020

\(x^7-1\)

\(=x^7-x^6+x^6-x^5+x^5-x^4+x^4-x^3+x^3-x^2+x^2-x+x-1\)

\(=x^6\left(x-1\right)+x^5\left(x-1\right)+x^4\left(x-1\right)+x^3\left(x-1\right)+x^2\left(x-1\right)+x\left(x-1\right)+\left(x-1\right)\)

\(=\left(x^6+x^5+x^4+x^3+x^2+x+1\right)\left(x-1\right)\)

1 tháng 3 2020

\(\left(x+7\right)\left(x-4\right)=2\left(x-4\right)\)

\(\Leftrightarrow\left(x+7\right)\left(x-4\right)-2\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+7-2\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\\x=-5\end{cases}}\)

Vậy : \(x\in\left\{4,-5\right\}\)

1 tháng 3 2020

\(\left(x+7\right)\left(x-4\right)=2\left(x-4\right)\)

\(\Leftrightarrow x^2-4x+7x-28=2x-8\)

\(\Leftrightarrow x^2+3x-28=2x-8\)

\(\Leftrightarrow x^2+3x-28-2x+8=0\)

\(\Leftrightarrow x^2+x-20=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-5\end{cases}}}\)

Vậy \(x\in\left\{4;-5\right\}\)

1 tháng 3 2020

Đặt \(\frac{a^2+1}{a}=x\Rightarrow x=\frac{a^2+1}{a}\ge\frac{2a}{a}=2\)

Khi đó:

\(S=\frac{5x}{2}+\frac{1}{x}=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{9x}{4}\ge2\sqrt{\frac{1}{x}\cdot\frac{x}{4}}+\frac{9\cdot2}{4}=1+\frac{18}{4}=\frac{11}{2}\)

Dấu "=" xảy ra tại a=1

1 tháng 3 2020

a) Ta có: \(x^2.\left(x^4-14x^2+49\right)=36\)

        \(\Leftrightarrow x^2.\left(x^2-7\right)^2=36\)

        \(\Leftrightarrow\left[x.\left(x^2-7\right)\right]^2=36\)

  - Vì \(\left[x.\left(x^2-7\right)\right]^2\)là số chính phương

 \(\Rightarrow\left[x.\left(x^2-7\right)\right]^2=36=\left(\pm6\right)^2\)

 + \(\orbr{\begin{cases}x=6\\x^2-7=6\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=6\\x^2=13\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=6\left(TM\right)\\x=\sqrt{13}\left(TM\right)\end{cases}}\)

+\(\orbr{\begin{cases}x=-6\\x^2-7=-6\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-6\\x^2=1\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-6\left(TM\right)\\x=\pm1\left(TM\right)\end{cases}}\)

 Vậy \(S\in\left\{6,\sqrt{13},-6,1,-1\right\}\)

    

1 tháng 3 2020

Đặt \(u=x+1\)

Phương trình trở thành \(\left(u+3\right)^3=u^3+279\)

\(\Leftrightarrow u^3+9u^2+27u+27=u^3+279\)

\(\Leftrightarrow9u^2+27u-252=0\)

Ta có \(\Delta=27^2+4.9.252=9801,\sqrt{\Delta}=99\)

\(\Rightarrow\orbr{\begin{cases}u=\frac{-27+99}{18}=4\\u=\frac{-27-99}{18}=-7\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x+1=4\\x+1=-7\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-8\end{cases}}\)

Vậy tập nghiệm của phương trình S = {3;-8}

1 tháng 3 2020

\(\frac{x^4-5x^2+4}{x^4-10x^2+9}=0\left(x\ne\pm3;x\ne\pm1\right)\)

\(\Leftrightarrow x^4-5x^2+4=0\)

\(\Leftrightarrow x^4-4x^2-x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-4\right)-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\x^2-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=1\\x^2=4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\pm1\left(ktm\right)\\x=\pm2\left(tm\right)\end{cases}}}\)

Vậy x=-2; x=2 

1 tháng 3 2020

\(Đkxđ:x^4-10x^2+9\ne0\Leftrightarrow\left(x^2-5\right)^2-16\ne0\)

\(\Leftrightarrow\left(x^2-5\right)^2\ne16\Leftrightarrow x\ne\pm1;\pm3\)

Với \(x\ne\pm1;\pm3\)Ta có"

\(\frac{x^4-5x^2+4}{x^4-10x^2+9}=0\Rightarrow x^4-5x^2+4=0\)

\(\Leftrightarrow\left(x^2-2\right)^2-x^2=0\)

\(\Leftrightarrow\left(x^2-2+x\right)\left(x^2-2-x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-2+x=0\\x^2-2-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x^2+2\frac{1}{2}x+\frac{1}{4}\right)-\frac{9}{4}=0\\\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)-\frac{9}{4}=0\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2=\frac{9}{4}\\\left(x-\frac{1}{2}\right)^2=\frac{9}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=1\\x=-2\end{cases}}\\\hept{\begin{cases}x=2\\x=-1\end{cases}}\end{cases}}}\)\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2=\frac{9}{4}\\\left(x-\frac{1}{2}\right)^2=\frac{9}{4}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=1\left(KTM\right)\\x=-2\left(TM\right)\end{cases}}\\\hept{\begin{cases}x=2\left(TM\right)\\x=-1\left(KTM\right)\end{cases}}\end{cases}}\)

Vậy \(x=\pm2\)

Nếu n và n5 có chữ số tận cùng giống nhau

⇒n5−n⋮10⇒n5−n⋮10

Ta có:

n5−nn5−n

=n(n4−1)=n(n4−1)

=n(n2−1)(n2+1)=n(n2−1)(n2+1)

=n(n−1)(n+1)(n2−4+5)=n(n−1)(n+1)(n2−4+5)

=n(n−1)(n+1)(n2−4)+5n(n−1)(n+1)=n(n−1)(n+1)(n2−4)+5n(n−1)(n+1)

=n(n−1)(n+1)(n−2)(n+2)+5n(n−1)(n+1)=n(n−1)(n+1)(n−2)(n+2)+5n(n−1)(n+1)

Vì n(n−1)(n+1)(n−2)(n+2)n(n−1)(n+1)(n−2)(n+2) là tích của 5 số tự nhiên liên tiếp

⇒n(n−1)(n+1)(n−2)(n+2)⋮5⇒n(n−1)(n+1)(n−2)(n+2)⋮5

Vì n(n−1)n(n−1) là tích của hai số tự nhiên liên tiếp

⇒n(n−1)(n+1)(n−2)(n+2)⋮2⇒n(n−1)(n+1)(n−2)(n+2)⋮2

⇒n(n−1)(n+1)(n−2)(n+2)⋮10(1)⇒n(n−1)(n+1)(n−2)(n+2)⋮10(1)

Ta có: 5n(n−1)(n+1)(n−2)(n+2)⋮55n(n−1)(n+1)(n−2)(n+2)⋮5

Vì n(n−1)n(n−1) là tích của hai số tự nhiên liên tiếp

⇒5n(n−1)(n+1)⋮2⇒5n(n−1)(n+1)⋮2

⇒5n(n−1)(n+1)⋮10(2)⇒5n(n−1)(n+1)⋮10(2)

Từ (1) và (2) suy ra

n(n+1)(n−1)(n−2)(n+2)+5n(n−1)(n+1)⋮10n(n+1)(n−1)(n−2)(n+2)+5n(n−1)(n+1)⋮10

⇒n5−n⋮10⇒n5−n⋮10

Vậy n và n5 có chữ số tận cùng giống nhau

hok tốt

1 tháng 3 2020

Ta có: \(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2-4+5\right)=n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2+1\right)\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)\left(n+1\right)\)

Ta thấy (n-2)(n-1)n(n+1)(n+2) là 5 số tự nhiên liên tiếp đồng thời chia hết cho 2 và 5

hay (n-2)(n-1)n(n+1)(n+2) chia hết cho 10 (1)
Ta lại có: (n-1)n(n+1) là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 2

=> 5(n-1)(n+1) chia hết cho 10 (2)

Từ (1)(2) => \(n^5-n\)chia hết cho 10 hay có chữ số tận cùng là 0

=> đpcm

gt: a/(b+c) + b/(c+a) + c/(a+b) = 1
A = a²/(b+c) + b²/(c+a) + c²/(a+b) = a[a/(b+c)] + b[b/(c+a)] + c[c/(a+b)]
= a[a/(b+c) + 1 - 1] + b[b/(c+a) + 1 - 1] + c[c/(a+b) + 1 - 1]
= a.(a+b+c)/(b+c) -a + b.(a+b+c)/(c+a) - b + c.(a+b+c)/(a+b) - c
= (a+b+c)[a/(b+c) + b/(c+a) + c/(a+b)] - (a+b+c)
= (a+b+c) - (a+b+c) = 0

1 tháng 3 2020

Xin phép ad cho em tách ạ,nguyên 1 câu khá  là dài,hihi

1 tháng 3 2020

Nãy bận xíu :D