K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2023

\(\left(x-2\right)\left(x-1\right)\left(x-4\right)\left(x-8\right)=4x^2\)

\(\Leftrightarrow[\left(x-2\right)\left(x-4\right)][\left(x-1\right)\left(x-8\right)]=4x^2\)

\(\Leftrightarrow\left(x^2-6x+8\right)\left(x^2-9x+8\right)=4x^2\)

thấy \(x=0;2\) không phải nghiệm của phương trình nên ta chia hai vế của pt cho \(x^2\) ta được \(:\)

\(\Leftrightarrow\left(x+\dfrac{8}{x}-9\right)\left(x+\dfrac{8}{x}-6\right)=4\)

\(Đặt:\) \(x+\dfrac{8}{x}=a\) thì pt trở thành \(:\)

\(\left(a-6\right)\left(a-9\right)=4\)

\(\Leftrightarrow a^2-15a+50=0\)

\(\Leftrightarrow\left(a-5\right)\left(a-10\right)=0\Leftrightarrow\left\{{}\begin{matrix}a=5\\a=10\end{matrix}\right.\)

\(Với\) \(a=5\) thì \(x+\dfrac{8}{x}=5\Leftrightarrow x^2-5x+8=0\left(vônghiem\right)\)

\(Với\) \(a=10\) thì \(x+\dfrac{8}{x}=10\Leftrightarrow x^2-10x+8=0\Leftrightarrow\left\{{}\begin{matrix}x=5-căn17\\x=5+căn17\end{matrix}\right.\)

\(Vậy...\)

31 tháng 1 2023

căn bậc 2 của \(17\) đấy á

AH
Akai Haruma
Giáo viên
30 tháng 1 2023

Lời giải:
ĐKXĐ: $x\geq \frac{-3}{2}$

PT $\Leftrightarrow x^2-4x+21-6\sqrt{2x+3}=0$

$\Leftrightarrow (x^2-6x+9)+[(2x+3)-6\sqrt{2x+3}+9]=0$

$\Leftrightarrow (x-3)^2+(\sqrt{2x+3}-3)^2=0$

Ta thấy: $(x-3)^2\geq 0; (\sqrt{2x+3}-3)^2\geq 0$ với mọi $x\geq \frac{-3}{2}$

Do đó để tổng của chúng bằng $0$ thì:
$(x-3)^2=(\sqrt{2x+3}-3)^2=0$

$\Leftrightarrow x=3$ (tm)

30 tháng 1 2023

Theo đề ra, ta có:

\(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)

\(\Leftrightarrow\left(a^{100}+b^{100}\right).\left(a^{102}+b^{102}\right)=\left(a^{101}+b^{101}\right)^2\)

\(\Leftrightarrow a^{100}.b^{100}.\left(a^2+b^2\right)+a^{202}+b^{202}=a^{202}+b^{202}+2a^{101}.b^{101}\)

\(\Leftrightarrow a^{100}.b^{100}.\left(a^2+b^2\right)=2a^{101}.b^{101}\)

\(\Leftrightarrow a^{100}.b^{100}.\left(a^2+b^2-2ab\right)=0\)

\(\Leftrightarrow a=b=0\)

\(\Rightarrow a^{100}+b^{100}=a^{101}+b^{101}\)

\(\Rightarrow a^{100}=a^{101}\)

\(\Leftrightarrow a^{100}.\left(a-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\left(loại\right)\\a=1\end{matrix}\right.\)

\(\Rightarrow A=a^{2015}+b^{2015}=1+1=2\).

 

30 tháng 1 2023

\(Từ:\) \(a^{100}+b^{100}=a^{101}+b^{101}\)

\(\Leftrightarrow a^{100}\left(a-1\right)+b^{100}\left(b-1\right)=0\left(1\right)\)

\(và\) \(a^{101}+b^{101}=a^{102}+b^{102}\)

\(\Leftrightarrow a^{101}\left(a-1\right)+b^{101}\left(b-1\right)=0 \left(2\right)\)

\(Từ\left(1\right)\) \(và\) \(\left(2\right)\)

\(\Rightarrow a^{101}\left(a-1\right)+b^{101}\left(b-1\right)-a^{100}\left(a-1\right)-b^{100}\left(b-1\right)=0\)

\(\Leftrightarrow a^{100}\left(a-1\right)^2+b^{100}\left(b-1\right)^2\)

\(Do\) \(a,b>0\Rightarrow\left\{{}\begin{matrix}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

\(\Rightarrow A=1+1=2\)

em không chắc cho lắm ạ

 

30 tháng 1 2023

ĐKXĐ : a;b;c  \(\ne0\)

Ta có : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2000}\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}-\dfrac{1}{a}\)

\(\Leftrightarrow\dfrac{b+c}{bc}=\dfrac{-\left(b+c\right)}{a\left(a+b+c\right)}\)

\(\Leftrightarrow\left(b+c\right)\left(\dfrac{1}{bc}+\dfrac{1}{a\left(a+b+c\right)}\right)=0\)

\(\Leftrightarrow\left(b+c\right).\dfrac{a\left(a+b+c\right)+bc}{abc\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(b+c\right).\dfrac{a^2+ab+ac+bc}{abc\left(a+b+c\right)}=0\)

\(\Leftrightarrow\dfrac{\left(b+c\right)\left(a+b\right)\left(a+c\right)}{abc\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}b+c=0\\a+b=0\\a+c=0\end{matrix}\right.\left(1\right)\)

Từ (1) kết hợp a + b + c = 2000 ta được điều phải chứng minh

30 tháng 1 2023

b) ĐKXĐ : \(x\ne\pm1\)

\(P=\dfrac{x}{x-1}+\dfrac{3}{x+1}-\dfrac{6x-4}{x^2-1}\)

\(=\dfrac{x\left(x+1\right)+3\left(x-1\right)-\left(6x-4\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)

c) ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

\(A=\dfrac{1}{x+\sqrt{x}}+\dfrac{2\sqrt{x}}{x-1}-\dfrac{1}{x-\sqrt{x}}\)

\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}-1+2x-\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2\left(x-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2\left(x-1\right)}{\sqrt{x}\left(x-1\right)}=\dfrac{2}{\sqrt{x}}\)

30 tháng 1 2023

a) ĐKXĐ : \(x\ge0;x\ne16\)

\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}+4}+\dfrac{4}{\sqrt{x-4}}\right):\dfrac{x+16}{\sqrt{x}+2}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-4\right)+4\left(\sqrt{x}+4\right)}{x-16}:\dfrac{x+16}{\sqrt{x}+2}\)

\(=\dfrac{x+16}{x-16}:\dfrac{x+16}{\sqrt{x}+2}=\dfrac{\sqrt{x}+2}{x-16}\)

 

\(=\dfrac{\left(\sqrt{x}-\sqrt{3}\right)^2}{\left(\sqrt{x}-\sqrt{3}\right).\left(\sqrt{x}+\sqrt{3}\right)}.\left(2\sqrt{x}+\sqrt{12}\right)\)

\(=\dfrac{\sqrt{x}-\sqrt{3}}{\sqrt{x}+\sqrt{3}}.2\left(\sqrt{x}+\sqrt{3}\right)\)

\(=2.\left(\sqrt{x}-\sqrt{3}\right)\)

 

30 tháng 1 2023

Với `x ne 3;x >= 0` có:

`[(\sqrt{x}-3)^2]/[(\sqrt{x}-3)(\sqrt{x}+3)].(2\sqrt{x}+2\sqrt{3})`

`=[\sqrt{x}-3]/[\sqrt{x}+3].2(\sqrt{x}+3)`

`=2(\sqrt{x}-3)`

`=2\sqrt{3}-6`

30 tháng 1 2023

Ta có:

`VT=[\sqrt{5}(\sqrt{5}+3)]/\sqrt{5}+[\sqrt{3}(\sqrt{3}+1)]/[\sqrt{3}+1]-\sqrt{5}-3`

    `=\sqrt{5}+3+\sqrt{3}-\sqrt{5}-3`

    `=\sqrt{3}=VP`

`=>Đpcm`

30 tháng 1 2023

Gọi x,y lần lượt là vận tốc và thời gian xe chạy

Ta có hệ phương trình:
 x.y = 180
x + (x+10)(y-1,45) = xy <=> 10y - 0,45x = 14,5 <=> 1800/x- 0,45x = 14,5
vậy x = 50 và y = 3 Đúng thì tick mình nhé.
30 tháng 1 2023

Gọi vận tốc hai xe lần lượt là \(a,b\left(b>a\right)\)(km/h)

Vì xe thứ hai đi được \(\dfrac{2}{3}\) đoạn đường mới gặp xe thứ nhất nên xe thứ nhật đi được \(\dfrac{1}{3}\) đoạn đường mới gặp xe thứ hai hay vận tốc xe thứ hai với xe thứ nhất lần lượt là \(2:1\)

Ta có:

\(b-a=10\) và \(\dfrac{b}{a}=\dfrac{2}{1}\)

Từ \(\dfrac{b}{a}=\dfrac{2}{1}\) suy ra \(\dfrac{b}{2}=\dfrac{a}{1}\).

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{b}{2}=\dfrac{a}{1}=\dfrac{b-a}{2-1}=\dfrac{10}{1}=10\)

Suy ra:

\(b=10\cdot2=20\)

\(a=10\cdot1=10\)

Vậy vận tốc xe thứ nhất sẽ là 10 km/h và vận tốc xe thứ hai là 20 km/h.

30 tháng 1 2023

Vì vòi 1 chảy 4h vòi 2 chảy 6h thì được \(\dfrac{2}{5}\) bể nên vòi 1 chảy \(4:\dfrac{2}{5}=10h\) vòi 2 chảy \(6:\dfrac{2}{5}=15\left(h\right)\) thì đầy bể.

Vòi 1 và vòi 2 chảy có tỉ lệ lần lượt là \(10:15\) hay \(2:3\)

Gọi thời gian mỗi vòi chảy đầy bể lần lượt là \(a,b\left(giờ\right)\)

Theo bài toán, ta có:

\(2a=3b\) hay \(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{a+b}{\dfrac{1}{2}+\dfrac{1}{3}}=\dfrac{12}{\dfrac{5}{6}}=14,4\)

Từ đây suy ra:

\(a=\dfrac{1}{2}\cdot14,4=7,2\)

\(b=\dfrac{1}{3}\cdot14,4=4,8\)

Vậy vòi thứ nhất mất 7,2 giờ để đầy bể, vòi thứ hai mất 4,8 giờ để đầy bể.