K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

a) Gọi tam giác ACB có AN là phân giác và trung tuyến AM

\(\frac{NB}{NC}=\frac{AB}{AC}=\frac{6}{12}=\frac{1}{2}\)

\(\Rightarrow NB=\frac{NC}{2}\)

NC+NB=NC+0,5NC=1,5NC=BC=9 (cm) <=> NC=6cm

=>NB=3cm

Ta có: \(\frac{NB}{BC}=\frac{3}{9}=\frac{1}{3}\)

Xét tam giác ABN có BI là phân giác

=> \(\frac{AI}{IN}=\frac{BA}{BN}=\frac{6}{3}=2\)

Lại có AM là trung tuyến nên \(\frac{AG}{GM}=2\)

\(\Rightarrow\frac{AG}{GM}=\frac{AI}{IN}=2\)

=> IG//BC(Talet đảo) (đpcm)

b) \(BM=\frac{9}{2}=4,5\left(cm\right)\)

=> MN=4,5 -3=1,5 (cm)

\(\frac{AG}{AM}=\frac{2}{3}=\frac{IG}{MN}\)(Định lý Talet)

\(\Rightarrow\frac{2}{3}=\frac{IG}{1,5}\Rightarrow IG=1cm\)

25 tháng 3 2020

\(\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(2x+2y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left[2\left(x+y\right)+\frac{4}{x+y}\right]^2}{2}\)

\(=8\)

Dấu "=" xảy  ra tại x=y=1/2

25 tháng 3 2020

Có vẻ kết quả  bị sai Huy ơi.

Diệp thay kết quả cuối cùng 8 ------------> 18 nhé!

26 tháng 3 2020

Đáp án là: D

25 tháng 3 2020

\(T=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)  ; x + y + z = 1

\(\Rightarrow T=\frac{x+y+z}{16x}+\frac{x+y+z}{4y}+\frac{x+y+z}{z}\)

\(=\frac{1}{16}+\frac{y}{16x}+\frac{z}{16x}+\frac{x}{4y}+\frac{1}{4}+\frac{z}{4y}+\frac{x}{z}+\frac{y}{z}+1\)

\(=\left(\frac{1}{16}+\frac{1}{4}+1\right)+\left(\frac{y}{16x}+\frac{x}{4y}\right)+\left(\frac{z}{16x}+\frac{x}{z}\right)+\left(\frac{z}{4y}+\frac{y}{z}\right)\)                    (1)

\(x;y;z>0\Rightarrow\frac{y}{16x};\frac{x}{4y};\frac{z}{16x};\frac{x}{z};\frac{z}{4y};\frac{y}{z}>0\)

áp dụng bđt cô si : 

\(\frac{y}{16x}+\frac{x}{4y}\ge2\sqrt{\frac{y}{16x}\cdot\frac{x}{4y}}=\frac{1}{4}\)                             (2)

\(\frac{z}{16x}+\frac{x}{z}\ge2\sqrt{\frac{z}{16x}\cdot\frac{x}{z}}=\frac{1}{2}\)                                 (3)

\(\frac{x}{4y}+\frac{y}{z}\ge2\sqrt{\frac{z}{4y}\cdot\frac{y}{z}}=1\)                                        (4)

(1)(2)(3)(4) \(\Rightarrow T\ge\frac{1}{16}+\frac{1}{4}+1+\frac{1}{4}+\frac{1}{2}+1\)

\(\Rightarrow T\ge\frac{49}{16}\)

dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{y}{16x}=\frac{x}{4y}\\\frac{z}{16x}=\frac{x}{z}\\\frac{z}{4y}=\frac{y}{z}\end{cases}}\Leftrightarrow\hept{\begin{cases}4y^2=16x^2\\z^2=16x^2\\z^2=4y^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2x\\z=4x\\z=2y\end{cases}}\) có x+y+z = 1

=> x + 2x + 4x = 1

=> x = 1/7

xong tìm ra y = 2/7 và z = 4/7

25 tháng 3 2020

(x+1)(2x-3)=(2x-1)(x+5)  

<=> 2x^2 - 3x + 2x - 3 = 2x^2 + 10x - x - 5

<=> -x - 3 = 9x - 5

<=> 9x + x = -3 + 5

<=> 10x = 2

<=> x = 1/5 

25 tháng 3 2020

Aii làm nhanhh giúp mình với mình cần gấp lắm nèk -.-

25 tháng 3 2020

C = 2x^2 + y^2 + 2xy - 4x - 2016

C = (x^2 + 2xy + y^2) + (x^2 - 4x + 4) - 2020

C = (x + y)^2 + (x - 2)^2 - 2020

(x+y)^2 > 0; (x - 2)^2 > 0

C > -2020

dấu "=" xảy ra khi x + y = 0 và x - 2 = 0

<=> x = 2; y = -2

25 tháng 3 2020

\(x^2+2\ge2\Rightarrow\frac{6}{x^2+2}\le\frac{6}{2}=3\)

Vay Max D=3, dau = xay ra khi x=0