\(\forall n\in N,n^3-n\) chia hết cho 6
Xác định xem mệnh đề sau đúng hay sai ( giải thích) phát biểu phủ định của các mệnh đè đo
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E mới c2 nên cg ch am hiểu lắm nên thôi lm đại nhé:))
Ta có: \(x^2+xy+y^2=\left(x^2+xy+\frac{1}{4}y^2\right)+\frac{3}{4}y^2\)
\(=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2\ge0\left(\forall x,y\right)\)
Vì nếu \(x=y=0\) => \(x^2+xy+y^2=0\)
=> Mệnh đề sai
Chỉ đúng ở phần không âm
Mệnh đề sau sai
Vì khi x = 1 thì :
VT = \(\frac{1^2-1}{1-1}=\frac{0}{0}\) ( không có phép chia cho 0 )
Phủ định của mệnh đề :
\(\forall x\in R\backslash\left\{1\right\};\frac{x^2-1}{x-1}=x+1\) là mệnh đề đúng
Bài giải
\(\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{EA}=\overrightarrow{CB}+\overrightarrow{ED}\)
\(\leftrightarrow\text{ }\overrightarrow{AB}-\overrightarrow{CB}+\overrightarrow{CD}-\overrightarrow{ED}+\overrightarrow{EA}=0\)
\(\leftrightarrow\text{ }\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{DC}+\overrightarrow{DE}+\overrightarrow{EA}=0\)
\(\leftrightarrow\text{ }\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{EA}=0\)
\(\leftrightarrow\text{ }\overrightarrow{AE}+\overrightarrow{EA}=0\) ( luôn đúng )
\(\Rightarrow\text{ ĐPCM}\)
\(\overrightarrow{AH}=\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\Leftrightarrow2\overrightarrow{AC}-\overrightarrow{AB}=3\overrightarrow{AH}\)
Gọi I là trung điểm AC
Ta có : \(BG=GH=2GI\Rightarrow GI=IH\)
Tứ giác \(AGCH\)có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành
\(\Rightarrow AH=GC\)
\(2\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{AB}+\overrightarrow{BC}\)
\(=\overrightarrow{AH}+\overrightarrow{HC}+\overrightarrow{BH}+\overrightarrow{HC}=\overrightarrow{AH}+2\overrightarrow{GH}+2\overrightarrow{HC}\)
\(=\overrightarrow{AH}+2\overrightarrow{GH}+2\left(\overrightarrow{HG}+\overrightarrow{GC}\right)=\overrightarrow{AH}+2\overrightarrow{GC}=\overrightarrow{AH}+2\overrightarrow{AH}=3\overrightarrow{AH}\)
( x2 + 4x + 3 )( x2 + 12x + 35 ) = 9
<=> ( x2 + x + 3x + 3 )( x2 + 5x + 7x + 35 ) = 9
<=> [ x( x + 1 ) + 3( x + 1 ) ][ x( x + 5 ) + 7( x + 5 ) ] = 9
<=> ( x + 1 )( x + 3 )( x + 5 )( x + 7 ) = 9
<=> [ ( x + 1 )( x + 7 ) ][ ( x + 3 )( x + 5 ) ] = 9
<=> ( x2 + 8x + 7 )( x2 + 8x + 15 ) = 9
<=> ( x2 + 8x + 7 )( x2 + 8x + 15 ) - 9 = 0
Đặt t = x2 + 8x + 7
Phương trình tương đương với :
t( t + 8 ) - 9 = 0
<=> t2 + 8t - 9 = 0
<=> t2 - t + 9t - 9 = 0
<=> t( t - 1 ) + 9( t - 1 ) = 0
<=> ( t - 1 )( t + 9 ) = 0
<=> \(\orbr{\begin{cases}t-1=0\\t+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=1\\t=-9\end{cases}}\)
Với t = 1
=> x2 + 8x + 7 = 1
<=> x2 + 8x + 7 - 1 = 0
<=> x2 + 8x + 6 = 0 (1)
\(\Delta'=b'^2-ac=4^2-1\cdot6=10\)
\(\Delta'>0\)nên (2) có hai nghiệm phân biệt :
\(\hept{\begin{cases}x_1=\frac{-b'+\sqrt{\Delta'}}{a}=-4+\sqrt{10}=\sqrt{10}-4\\x_2=\frac{-b-\sqrt{\Delta'}}{a}=-4-\sqrt{10}=-\sqrt{10}-4\end{cases}}\)
Với t = -9
=> x2 + 8x + 7 = -9
<=> x2 + 8x + 7 + 9 = 0
<=> x2 + 8x + 16 = 0
<=> ( x + 4 )2 = 0
<=> x + 4 = 0
<=> x = -4
Vậy S = { \(\pm\sqrt{10}-4;-4\)}
\(i=f\left(x\right)=3.\left(2x+4\right)\)
\(\Rightarrow f\left(4\right)=3.\left(2.4+4\right)=3.12=36\)
\(f\left(x\right)=3\times\left(2x+4\right)\)
\(\Rightarrow f\left(4\right)=3\times\left(2\times4+4\right)=36\)
Xét \(n=0\Rightarrow n^3-n=0⋮6\)
\(\forall n\inℕ^∗,n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
Vì (n-1), n, (n+1) là 3 số tự nhiên liên tiếp nên sẽ có ít nhất 1 số chẵn và 1 số chia hết cho 3---> Tích của chúng chia hết cho 6
Vậy mệnh đề đúng.
Mệnh đề phủ định: \(\exists n\inℕ,n^3-n⋮6\)