K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2020

\(P=\frac{x^2}{y^2+1}+\frac{y^2}{z^2+1}+\frac{z^2}{x^2+1}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y^2+y^2z^2+z^2x^2+x^2+y^2+z^2}\)

Với \(x^2y^2+y^2z^2+z^2x^2\le\frac{\left(x^2+y^2+z^2\right)^2}{3}\)

\(\Rightarrow P\ge\frac{3\left(x^2+y^2+z^2\right)^2}{\left(x^2+y^2+z^2\right)^2+3\left(x^2+y^2+z^2\right)}=\frac{3\left(x^2+y^2+z^2\right)}{x^2+y^2+z^2+3}\)

Xét:\(\frac{3\left(x^2+y^2+z^2\right)}{x^2+y^2+z^2+3}-\frac{3}{2}=\frac{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{2\left(x^2+y^2+z^2+3\right)}\ge0\)

Đến đây xong rồi he

5 tháng 4 2020

nub vậy giả thiết bằng thừa nhỉ ta:D

2 tháng 4 2020

Gọi tử số lúc đầu là a; mẫu số luacs đầu là a/(a + 3)

Phân số lúc sau là : (a + 1)/(a + 4) => (a + 1)/(a + 4) = 3/4 

Áp dụng t/c hai phân số bằng nhau ta có 4a + 4 = 3a + 12 => a = 8

Suy ra phân sô lúc đầu là 8/11

học tốt

Trả lời:

Áp dụng Bất Đẳng Thức Cauchy-Schwarz ta có:

(3+1)(3x2+y2)≥(3x+y)2

⇒4(3x2+y2)≥(3x+y)2⇒4(3x2+y2)≥(3x+y)2

⇒4(3x2+y2)≥(3x+y)2=12=1⇒4(3x2+y2)≥(3x+y)2=12=1

⇒M=3x2+y2≥14⇒M=3x2+y2≥14

Đẳng thức xảy ra khi x=y=14

2 tháng 4 2020

Ta có:  x + y = 1 => y = 1 - x

Khi đó: P = \(x^3+y^3+2x^2y^2=\left(x+y\right)^3-3xy\left(x+y\right)+2\left(xy\right)^2\)

\(=2\left(xy\right)^2-3xy+1=2\left[\left(xy\right)^2-2.xy.\frac{3}{4}+\frac{9}{16}\right]-\frac{1}{8}\)

\(=2\left(xy-\frac{3}{4}\right)^2-\frac{1}{8}\)

\(=2\left[x\left(1-x\right)-\frac{3}{4}\right]^2-\frac{1}{8}\)

\(=2\left[-x^2+x-\frac{3}{4}\right]^2-\frac{1}{8}\)

\(=2\left[\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\right]^2-\frac{1}{8}\ge\frac{3}{8}\)

Dấu "=" xảy ra <=> x = y =1/2

1 tháng 4 2020

Bài 2 bạn tham khảo cách làm của cô Linh Chi tại đây nhé :

Câu hỏi của nguyen trung nghia - Toán lớp 8 - Học toán với OnlineMath

Học tốt và cá tháng tư đừng để bị troll nha !!!!!!!!!!!

1 tháng 4 2020

B1:

\(M=\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(=2+\frac{x}{y}+\frac{y}{x}\)

Nhờ dự đoán được điểm rơi,ta chứng minh bất đẳng thức sau luôn đúng:\(\frac{x}{y}+\frac{y}{x}\le\frac{5}{2}\)

Thật vậy !!!

\(\frac{x}{y}+\frac{y}{x}\le\frac{5}{2}\)

\(\Leftrightarrow\left(\frac{x}{y}-\frac{1}{2}\right)+\left(\frac{y}{x}-2\right)\le0\)

\(\Leftrightarrow\frac{2x-y}{2y}+\frac{y-2x}{x}\le0\)

\(\Leftrightarrow\frac{2x^2-xy+2y^2-4xy}{2xy}\le0\)

\(\Leftrightarrow2x^2-5xy+2y^2\le0\)

\(\Leftrightarrow\left(x-2y\right)\left(2x-y\right)\le0\) ( đúng )

Dấu "=" xảy ra tại \(x=1;y=2\)

Vậy \(M_{max}=\frac{9}{2}\Leftrightarrow x=1;y=2\)