Giải các pt sau:
\(\sqrt{5-x^6}=\sqrt[2]{3x^4-2}\)
\(\sqrt{3-x}+\sqrt{x-1}=2+\left(x-y\right)^2\)
\(\sqrt{2x-1}+x^2-3x+1=0\)
\(\sqrt{x}+\sqrt{x+9}=\sqrt{x+1}+\sqrt{x+4}\)
mình đang cần gấp, bạn nào giải nhanh trong ngày hôm nay mk tích cho nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a) Căn thức có nghĩa \(\Leftrightarrow4-2x\ge0\Leftrightarrow2x\le4\Leftrightarrow x\le2\)
b) Thay x = 2 vào biểu thức A, ta được: \(A=\sqrt{4-2.2}=\sqrt{0}=0\)
Thay x = 0 vào biểu thức A, ta được: \(A=\sqrt{4-2.0}=\sqrt{4}=2\)
Thay x = 1 vào biểu thức A, ta được: \(A=\sqrt{4-2.1}=\sqrt{2}\)
Thay x = -6 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-6\right)}=\sqrt{16}=4\)
Thay x = -10 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-10\right)}=\sqrt{24}=2\sqrt{6}\)
c) \(A=0\Leftrightarrow\sqrt{4-2x}=0\Leftrightarrow4-2x=0\Leftrightarrow x=2\)
\(A=5\Leftrightarrow\sqrt{4-2x}=5\Leftrightarrow4-2x=25\Leftrightarrow x=\frac{-21}{2}\)
\(A=10\Leftrightarrow\sqrt{4-2x}=10\Leftrightarrow4-2x=100\Leftrightarrow x=-48\)
\(\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right)^2\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}+\frac{2}{ab}-\frac{2}{b\left(a+b\right)}-\frac{2}{a\left(a+b\right)}\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}+2\left(\frac{1}{ab}-\frac{1}{b\left(a+b\right)}-\frac{1}{a\left(a+b\right)}\right)\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}+2\cdot\frac{a+b-a-b}{ab\left(a+b\right)}\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}\)
\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=\left|\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right|\)
\(VT=\frac{1}{3x^2+y^2}+\frac{4}{2y^2+3xy}\ge\frac{9}{3\left(x^2+2xy+y^2\right)}=\frac{3}{\left(x+y\right)^2}\ge3\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
(CĂN X^2+1 -X)(CĂN X^2+1+X)(CĂN Y^2+1+Y)=1
=>CĂN Y^2+1 +Y/CĂN X^2+1 +X=1
=>CĂN X^2+1-X=CĂN Y^2+1 +Y
=>X+Y=CAWNX^2+1-X-CĂN Y^2+1-Y
TƯƠNG TỰ X+Y= CĂN Y^2+1-Y-CĂN X^2+1 -X
VẬY X+Y=0