Cho tam giác ABC có ba góc nhọn
nội tiếp (O;R). Tiếp tuyến tại B và C của (O) cắt nhau tại I. Đường thẳng AI cắt (O) tại điểm thứ
hai là D (khác A). Đoạn thẳng OI cắt BC tại H.
a) Chứng minh : OI vuông góc với BC và HB.HC = HOHI
b) Vẽ OK vuông góc với AD. Chứng minh 5 điểm I, B, K, O, C cùng thuộc một đường tròn
c) Từ D kẻ đường thẳng vuông góc với OB, đường thẳng này cắt BC tại M và cắt AB tại N.
Chứng minh : M là trung điểm của DN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
Xét pt hoành độ giao điểm của (P) và (d): \(x^2+2x-2m=0\) (1)
\(\Delta=2^2-4\left(-2m\right)=4+8m\)
Để (d) tiếp xúc (P) thì pt (1) có nghiệm kép \(\Rightarrow\Delta=4+8m=0\)
\(\Rightarrow m=-\dfrac{1}{2}\)
Thay \(m=-\dfrac{1}{2}\) vào (1) \(\Rightarrow x^2+2x+1=0\)
\(\Rightarrow\left(x+1\right)^2=0\) \(\Rightarrow x=-1\)
\(\Rightarrow y=\dfrac{1}{2}\left(-1\right)^2=\dfrac{1}{2}\)
Vậy (d) tiếp xúc (P) khi \(m=-\dfrac{1}{2}\) tại tọa độ \(\left(-1;\dfrac{1}{2}\right)\).
Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$
$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$
$\Leftrightarrow x-2=0$ hoặc $4-x=0$
$\Leftrightarrow x=2$ hoặc $x=4$ (tm)
Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$
$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$
Với $4x^3-3x^2+6x-4=0(*)$
Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$
Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:
$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$
Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)
Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)
pt hoành độ giao điểm của \(\left(P\right):y=x^2\) và \(\left(d\right):y=2x+3\) là \(x^2=2x+3\Leftrightarrow x^2-2x-3=0\) \(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\).
Khi \(x=3\) thì \(y=x^2=9\), khi \(x=-1\) thì \(y=x^2=1\). Do đó (P) cắt (d) tại \(A\left(3;9\right)\) và \(B\left(-1;1\right)\). Từ đó dễ dàng suy ra \(C\left(3;0\right)\) và \(D\left(-1;0\right)\). Từ đó suy ra \(CD=4\).
Lại có \(AC=1;BD=9\). Do đó \(S_{ABCD}=\dfrac{\left(AC+BD\right).CD}{2}=\dfrac{\left(1+9\right).4}{2}=20\) (đơn vị diện tích)
\(x^2-2\left(m+4\right)x+m^2+8m-9=0\left(1\right)\)
Ta giải \(\Delta=[-2\left(m+4\right)]^2-4\left(m^2+8m-9\right)=100>0\forall m\)
suy ra pt có 2 nghiệm phân biệt \(x_1,x_2\forall m\).
Ta có: \(x_1=m-1\), \(x_2=m+1\) (thay \(\Delta\) vào công thức tìm nghiệm phân biệt).
Gọi \(A=\dfrac{x_1^2+x_2^2-48}{x_1^2+x_2^2}\).
\(\Rightarrow A=1-\dfrac{48}{x_1^2+x_2^2}=1-\dfrac{48}{\left(m-1\right)^2+\left(m+1\right)^2}=1-\dfrac{24}{m^2+1}\).
Để biểu thức A nguyên thì \(\dfrac{24}{m^2+1}\) nguyên, suy ra \(m^2+1\inƯ\left(24\right)\).
\(\Rightarrow m^2+1\in\left\{1;2;4;6;8;12;24\right\}\)
\(\Rightarrow m\in\left\{0;\pm1\right\}\) (vì m nhận giá trị nguyên)
Vậy \(m\in\left\{0;\pm1\right\}\) là giá trị cần tìm.
Mình chỉnh sửa lại một chút nhé.
\(A=1-\dfrac{24}{m^2+2}\)
\(\Rightarrow...\)\(\Rightarrow\)\(m^2+2\in\left\{1;2;3;4;6;8;12;24\right\}\)
\(\Rightarrow m\in\left\{0;\pm1;\pm2\right\}\)
Vậy...
Bạn có đáp án câu c bài này chưa ạ?