Cho a,b,c,d > 0. Tìm min
S= a/b+c+d+b/a+c+d+c/a+b+d+d/a+b+b+c+d/a+a+c+d/b+a+b+d/c+a+b+c/d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(n\in N\)
cho \(n\in\left(1..10\right)\)
từ 1...10 có 2 số 1 và 0 là co \(\sqrt[3]{n}\)bằng chính nó
từ 1...1000 có 1 số là 1000 vì nếu bỏ 3 chữ số tận cùng thì \(\sqrt[3]{1}=1\)
giả sử
Không mất tính tổng quát giả sử : 0 < x\(\le\)y\(\le\)z.
Ta có: xyz = 2(x + y + z ) \(\le\)2 ( z + z + z ) = 6 z
Và xy = 2 ( x + y + z ) : z
=> xyz \(\le\)6z
=> xy \(\le\)6
vì x, y là số nguyên dương
=> xy \(\in\){1; 2; 3; 4; 5; 6} với x\(\le\)y
+) TH1 : xy = 1 => x = y = 1
=> z = 2 ( 2 + z ) => z = 4 + 2z => z = -4 loại
+) TH2: xy = 2 => x = 1; y = 2
=> 2 z = 2 ( 1 + 2 + z ) => 0z = 6 loại
+) TH3: xy = 3 => x = 1; y = 3
=> 3z = 2 ( 1 + 3 + z ) => z = 8 ( thỏa mãn )
+) Th4: xy = 4 => x =2 ; y = 2 hoặc x = 1; y =4
Với x =2; y = 2 => 4z =2 ( 4+ z) => z = 4 ( thỏa mãn )
Với x = 1; y = 4; => 4z = 2 ( 5 + z ) => z = 5 ( thỏa mãn)
Em làm tiếp nhé!
Cô si lên:
\(S\ge8\sqrt[8]{\frac{abcd\left(b+c+d\right)\left(a+c+d\right)\left(a+b+d\right)\left(a+b+c\right)}{abcd\left(b+c+d\right)\left(a+c+d\right)\left(a+b+d\right)\left(a+b+c\right)}}=8\)
๖²⁴ʱČøøℓ ɮøү 2к⁷༉ Liệu điểm rơi có xảy ra ???
Dùng \(\Sigma_{cyc}\) với \(\Pi_{cyc}\) cho nó lẹ nha,chớ mik nhác lắm:((
\(S=\Sigma_{cyc}\left(\frac{a}{b+c+d}+\frac{b+c+d}{a}\right)\)
\(=\Sigma_{cyc}\left(\frac{a}{b+c+d}+\frac{b+c+d}{9a}\right)+\Sigma_{cyc}\frac{8}{9}\cdot\frac{b+c+d}{a}\)
\(\ge8\sqrt[8]{\Pi_{cyc}\frac{a}{b+c+d}\cdot\Pi_{cyc}\frac{b+c+d}{9a}}+\frac{8}{9}\left(\frac{b}{a}+\frac{c}{a}+\frac{d}{a}+\frac{a}{b}+\frac{c}{b}+\frac{d}{b}+\frac{a}{c}+\frac{b}{c}+\frac{d}{c}+\frac{a}{d}+\frac{b}{d}+\frac{c}{d}\right)\)
\(\ge\frac{8}{3}+\frac{8}{9}\cdot12\left(use:\frac{x}{y}+\frac{y}{x}\ge2\right)\)
\(=\frac{40}{3}\)
Dấu "=" xảy ra tại a=b=c=d.
P/S:Viết tắt rồi mà vẫn dài:( Thử hỏi xem nếu ko viết thì sao ??