K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2020

\(Q=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\le3-\frac{16}{x+y+z+6}=\frac{1}{3}\)

dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\frac{1}{2};\frac{1}{2};-1\right)\)

3 tháng 11 2020

Bổ đề: \(\sqrt{u-1}+\sqrt{v-1}\le\sqrt{uv}\left(u,v\ge1\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow u+v-2+2\sqrt{\left(u-1\right)\left(v-1\right)}\le uv\Leftrightarrow\left(u-1\right)\left(v-1\right)+1\ge2\sqrt{\left(u-1\right)\left(v-1\right)}\)(đúng theo bất đẳng thức AM - GM)

Áp dụng bổ đề (*), ta được: \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\le\sqrt{\left(ab+1\right)-1}+\sqrt{c-1}\le\sqrt{c\left(ab+1\right)}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}ab\left(c-1\right)=1\\\left(a-1\right)\left(b-1\right)=1\end{cases}}\)

12 tháng 4 2020

\(S^2=\left(\left|x\right|+\left|y\right|+\left|x\right|\right)^2=x^2+y^2+z^2+2\left(\left|x\right|\left|y\right|+\left|y\right|\left|z\right|+\left|z\right|\left|x\right|\right)\)

\(S^2=x^2+y^2+z^2+\left|x\right|\left(\left|y\right|+\left|z\right|\right)+\left|y\right|\left(\left|z\right|+\left|x\right|\right)+\left|z\right|\left(\left|x\right|+\left|y\right|\right)\)

Áp dụng BĐT chứa dấu GTTĐ ta có:

\(\left|y\right|+\left|z\right|\ge\left|y+z\right|=\left|-x\right|=\left|x\right|\Rightarrow\left|x\right|\left(\left|y\right|+\left|z\right|\right)\ge z^2\)

Cmtt:\(\left|y\right|\left(\left|z\right|+\left|x\right|\right)\ge y^2,\left|z\right|\left(\left|x\right|+\left|y\right|\right)\ge z^2\)

Vì vậy \(S^2\ge2\left(x^2+y^2+z^2\right)\Rightarrow S^2\ge16\Rightarrow S\ge4\)

Dấu "=" xảy ra khi (x;y;z)=(2;-2;0) và hoán vị của nó, ta có S=4