K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(8x^2+59x+66=8x^2+48x+11x+66\)

\(=8x\left(x+6\right)+11\left(x+6\right)=\left(8x+11\right)\left(x+6\right)\)

DD
6 tháng 6 2021

\(8x^2+59x+66=8x^2+48x+11x+66=8x\left(x+6\right)+11\left(x+6\right)\)

\(=\left(8x+11\right)\left(x+6\right)\)

6 tháng 6 2021

\(6^2.6^4-4^3.\left(3^6-1\right)\)

\(=6^6-2^6.\left(3^6-1\right)\)

\(=6^6-6^6+2^6\)

\(=64\)

6 tháng 6 2021

62 x 64 - 43 x ( 36 - 1 )

= 66 - 26 x ( 36 - 1 )

= 66 - 66 + 26

= 26 

= 64

Ta có:\(A=\frac{x-t}{t+y}+\frac{t-y}{y+z}+\frac{y-z}{z+x}+\frac{z-x}{x+t}\)

\(\Rightarrow A+4=\left(\frac{x-t}{t+y}+1\right)+\left(\frac{t-y}{y+z}+1\right)+\left(\frac{y-z}{z+x}+1\right)+\left(\frac{z-x}{x+t}+1\right)\)

\(=\frac{x+y}{t+y}+\frac{t+z}{y+z}+\frac{x+y}{z+x}+\frac{z+t}{x+t}=\left(x+y\right)\left(\frac{1}{t+y}+\frac{1}{z+x}\right)+\left(t+z\right)\left(\frac{1}{y+z}+\frac{1}{x+t}\right)\)

Do x,y,z,t là các số dương nên áp dụng bất đẳng thức cô-si,ta có:

\(\Rightarrow A+4\ge\frac{4\left(x+y\right)}{x+y+z+t}+\frac{4\left(z+t\right)}{x+y+z+t}=4\Rightarrow A\ge0\left(ĐPCM\right)\)

Dấu bằng xảy ra khi và chỉ khi \(\hept{\begin{cases}x=y\\z=t\end{cases}}\)

Ta có:\(\sqrt{\frac{a}{b+c-a}}=\frac{a}{\sqrt{a\left(b+c-a\right)}}\ge\frac{2a}{a+b+c-a}=\frac{2a}{b+c}\)(BĐT cô-si)

CMTT:\(\Rightarrow\hept{\begin{cases}\sqrt{\frac{b}{c+a-b}}\ge\frac{2b}{c+a}\\\sqrt{\frac{c}{a+b-c}}\ge\frac{2c}{a+b}\end{cases}}\)

\(\Rightarrow VT\ge2\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=2\left(\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ca+bc}\right)\)

\(\ge2.\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

Mặt khác \(\left(a+b+c\right)^2-3\left(ab+bc+ca\right)=\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\ge0\)

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Do đó:\(\Rightarrow VT\ge\frac{3\left(ab+bc+ca\right)}{ab+bc+ca}=3\left(ĐPCM\right)\)

Đấu bằng xảy ra khi và chỉ khi a=b=c

5 tháng 6 2021

cô si xong rồi dùng nesbitt là được , không cần phải làm vậy đâu ^^

\(R=\sqrt{3}\)

\(AB=R\sqrt{3}=3\)

Có các mặt là tam giác đều 

\(\Rightarrow SC=AB=BC=AC=3\)

\(H\) là tâm đường tròn ngoại tiếp đồng thời là chân đường cao :

\(\Rightarrow\Delta SHC\)vuông tại \(H\)

Áp dụng vào tam giác SHC định lý py-ta- go

\(\Rightarrow SH=\sqrt{SC^2-HC^2}=\sqrt{6}cm\)

\(S_{ABC}=\frac{1}{2}.AC.AB.sin\widehat{A}=\frac{1}{2}.3.3.\frac{\sqrt{3}}{2}=\frac{9\sqrt{3}}{4}\)

\(\Rightarrow S\)xung quanh hình chóp \(=4S_{ABC}=9\sqrt{3}\left(cm^2\right)\)

4 tháng 6 2021

Câu hỏi của Chu Hà Gia Khánh - Tiếng Anh lớp 4 - Học trực tuyến OLM

4 tháng 6 2021

\(A=2^0+2^1+2^2+...+2^{98}+2^{99}\)

\(=\left(2^0+2^1+2^2+2^3+2^4\right)+....+\left(2^{95}+2^{96}+2^{97}+2^{98}+2^{99}\right)\)

\(=\left(1+2+4+8+16\right)+...+2^{95}\left(1+2+4+8+16\right)\)

\(=31+...+2^{95}.31\)

\(=31\left(1+...2^{95}\right)⋮31\left(đpcm\right)\)

4 tháng 6 2021

\(A=2^0+2+2^2+...+2^{98}+2^{99}\)

\(=1+2+2^2+2^3+2^4+...+2^{95}\left(1+2+2^2+2^3+2^4\right)\)

\(=31+...+2^{95}.31=31\left(2^5+...+2^{95}\right)⋮31\)( đpcm )

4 tháng 6 2021

Ta có a + b + c = 6

=> (a + b + c)2 = 36

=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 36

=> 12 + 2ab + 2bc + 2ca = 36

=> 2ab + 2bc + 2ca = 24

=> ab + bc + ca = 12 

Khi đó a2 + b2 + c2 = ab + bc + ca (= 12)

<=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca 

<=>  2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0 

<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2) = 0

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0

<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\)

=> a = b = c = 2 

Khi đó A = (2 - 3)2021 + (2 - 3)2021 + (2 - 3)2021

= -1 + (-1) + (-1) 

= -3

4 tháng 6 2021

A B C H D E

a, Xét tam giác AHB và tam giác CHA ta có : 

^AHB = ^CHA = 900

^ABH = ^CAH ( cùng phụ ^BAH )

Vậy tam giác AHB ~ tam giác CHA ( g.g )

4 tháng 6 2021

b, Xét tam giác AEB và tam giác DAB ta có 

^AEB = ^DAB = 900

^B _ chung 

Vậy tam giác AEB ~ tam giác DAB ( g.g )

3 tháng 6 2021

A B C 15 25 H I O

mình lấy cái đáp án bài trước của mình nhé, vì cùng 1 bài á :)) nên sẽ hơi tắt 

d, Ta có : \(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.15.20=150\)cm2

\(S_{HCO}=\frac{1}{2}.OH.OC=\frac{1}{2}.\frac{9}{2}.OC\)

mà theo định lí Pytago ta có : \(OC^2=OH^2+HC^2=\frac{81}{4}+9=\frac{117}{4}\Rightarrow OC=\frac{3\sqrt{13}}{2}\)cm 

\(\Rightarrow S_{HCO}=\frac{1}{2}.\frac{9}{2}.\frac{3\sqrt{13}}{2}=\frac{27\sqrt{13}}{8}\)cm

\(S_{AIC}=\frac{1}{2}.AI.AC=\frac{1}{2}.\frac{15}{2}.15=\frac{225}{4}\)cm2

Vậy \(S_{IOHB}=S_{ABC}-S_{AIC}-S_{HCO}\)

\(=150-\frac{225}{4}-\frac{27\sqrt{13}}{8}\approx81,58\)cm2

3 tháng 6 2021

Phần d nha

3 tháng 6 2021

Cho tam giác abc có góc a = 90, cạnh ac= 15,bc=25(cm) . Kẻ đường cao ah(h thuộc bc)Vẽ thêm đường phân giác ci ( i thuộc ab) . gọi O là giao điểm của ah và ci.CM:HC.AI=AC.HO

Biến đổi

HC.AI=AC.HO

<=> HC/HO=AC/AI

xét 2 tam giac HCO va tam giac ACI

3 tháng 6 2021

mình chỉ nói ý thôi nhé

+) goc AHB = goc CAB cung = 90 do)

   b la goc chung

+) tính AB dung py-ta-go

tính AH bang cach thay so vào các tỉ số dong dang của 2 tam giac tren 

tính BH tương tự như tính AH

+)  biến đổi

HC.AI=AC.HO

<=> HC/HO=AC/AI

xét 2 tam giac HCO va tam giac ACI