cho A=1+5+52+53+...+52023
so sánh 4.A với 52024
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
99-97+95-93+91-89+......+7-5+3-1
= (99-97) + (95-93) + (91-89) +...+ (7-5) + (3-1)
= 2 + 2 + 2 + ... + 2 + 2
= 2 x 25
= 50
`# \text {DNamNgV}`
\(2^{2022}-1+1=2^x\\ \Rightarrow2^{2022}-\left(1-1\right)=2^x\\ \Rightarrow2^{2022}=2^x\\ \Rightarrow x=2022\)
Vậy, `x = 2022.`
28=22.7 ; 35=5.7
=> BCNN(28;35)=22.5.7=140
B(140)={0;140;280;420;560;700;...}
=> B={0;140;280;420}
A = 1111...1 ( gồm 81 chữ số 1 )
=> 1111...1 cũng chia hết 9 ( gồm 81 chữ số 1 )
Mặt khác ta có :
1 + 1 + ... + 1 = 1 . 81 = 81
Ta lại có :
81 = 92 chia hết 9
=> 1111...1 ( gồm 81 chữ số 1 ) chia hết cho 81. đó nha
A = 1111...1 ( gồm 81 chữ số 1 )
=> 1111...1 cũng chia hết 9 ( gồm 81 chữ số 1 )
Mặt khác ta có :1 + 1 + ... + 1 = 1 . 81 = 81
Ta có tiếp :
81 = 92 chia hết 9
=> 1111...1 ( gồm 81 chữ số 1 ) chia hết cho 81.
Viết tập A bằng liệt kê à em?
A={0;1;2;3;4;5;6;7;8;9;10;11;12;13;14;15}
Ta có :
A = 1 + 5 + \(5^2\)+\(5^3\)+...+ \(5^{2023}\)
5A = 5 + \(5^2\)+\(5^3\)+\(5^4\)+..+ \(5^{2024}\)
=> 5A - A = ( 5 + \(5^2\)+\(5^3\)+\(5^4\)+..+ \(5^{2024}\) ) - ( 1 + 5 + \(5^2\)+\(5^3\)+...+ \(5^{2023}\) )
=> 4A = \(5^{2024}\)- 1
Nhận thấy :
\(5^{2024}\) - 1 > \(5^{2024}\)
=> 4A < \(5^{2024}\)
Vậy 4A < \(5^{2024}\)
Thấy hay tick hộ mk vs ạ