Từ điểm A ở ngoài đường tròn (O;R) vẽ hai tiếp tuyến AB, AC đến (O) (B, C là các tiếp điểm).Trên tia đối của tia BC lấy điểm Q. Vẽ hai tiếp tuyến QM, QN đến (O) (M, N là tiếp điểm). CM: A, M, N thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi: \(1h24'=1,4h\).
Gọi thời gian dự định là \(x\left(h\right);x>1,4\).
vận tốc dự định là \(y\left(km/h\right),y>5\).
Quãng đường AB là: \(xy\left(km\right)\).
Nếu vận tốc tăng \(10km/h\)thì vận tốc là \(y+10\left(km/h\right)\), thời gian đi hết quãng đường khi đó là \(x-1,4\left(h\right)\).
Nếu vận tốc giảm \(5km/h\)thì vận tốc là \(y-5\left(km/h\right)\), thời gian đi hết quãng đường khi đó là: \(x+1\left(h\right)\).
Ta có hệ phương trình:
\(\hept{\begin{cases}\left(x-1,4\right)\left(y+10\right)=xy\\\left(x+1\right)\left(y-5\right)=xy\end{cases}}\Leftrightarrow\hept{\begin{cases}10x-1,4y-14=0\\-5x+y-5=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}10x-1,4y=14\\-10x+2y=10\end{cases}}\Leftrightarrow\hept{\begin{cases}0,6y=24\\x=\frac{14+1,4y}{10}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=40\end{cases}}\)(thỏa mãn)
Vậy vận tốc dự định là \(40km/h\), quãng đường AB là \(40.7=280km\).
Vì M là giao điểm của đường trung trực A và C
=> M là tâm đường thẳng ngoại tiếp tam giác ABC
=> MA = MB = MC
Vì MA = MC
=> M nằm trên đường thẳng đi qua AC
OA = OC
=> O nằm trên đường thẳng đi qua AC
=> OM là đường trung trực của AC
OM cắt AC tại P
Vậy đường thẳng MO đi qua điểm chính giữa AC