K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2020

Tự vẽ hình nha ><

a) ^ABD = 900 => ^ABE = 900

EF \(\perp\)AD => ^EFA = 900

=> Tứ giác ABEF có tổng 2 góc đối = 900 nội tiếp được đường tròn

19 tháng 3 2020

ta có \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)

zì 5 , 7 là 2 số nguyên tố cùng nhau . Nên

\(\hept{\begin{cases}x+2y=5m\\x^2+xy+y^2=7m\end{cases}m\inℤ}\)

từ \(x+2y=5m=>5m-2y=x.\)thay zô \(x^2+xy+y^2=7m\)zà rút gọn ta được

\(\left(5m-2y\right)^2+\left(5m-2y\right)y+y^2=7m\Leftrightarrow3y^2-15my+25m^2-7m=0\left(1\right)\)

=>\(3\left(y^2-5my\right)+25m^2-7m=0=>3\left(y-\frac{5m}{2}\right)^2-\frac{75m^2}{4}=7m-25m^2\)

=>\(3\left(y-\frac{5m}{2}\right)^2=\frac{1}{4}\left(-25m^2+28m\right)\)

zì \(3\left(y-\frac{5m}{2}\right)^2\ge0\forall m,y\)

=>\(\frac{1}{4}\left(-25m^2+28m\right)\ge0\Leftrightarrow25m^2-28m\le0\Leftrightarrow m\left(m-\frac{28}{25}\right)\le0\Leftrightarrow0\le m\le\frac{28}{25}\)

mà \(m\inℤ\)nên \(m\in\left\{0,1\right\}\)

zới m=0 thay zô (1) ta được y=0. từ đó tính đc x=0

zới m =1 thây zô (1) ta được \(3y^2-15y+18=0=>y^2-5y+6=0=>\orbr{\begin{cases}y=2\\y=3\end{cases}}\)

zới y=2 , m=1 thì ta tính đc x=1

zới y=3 , m=1 thì ta tính đc x=-1

zậy \(\left(x,y\right)\in\left\{\left(0,0\right);\left(1,2\right)\left(-1,3\right)\right\}\)

19 tháng 3 2020

\(\Delta=m^2-4\left(m-1\right)=\left(m-2\right)^2\ge0\forall m\)

=> phương trình  luôn có nghiêm zới \(\forall m\)

ta có \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}=>x^2_1+x^2_2}=m^2-2m+2\)

ta có \(A=\frac{2x_1x_2+3}{x^2_1+x^2_2+2\left(x_1x_2+1\right)}=\frac{2m+1}{m^2+2}\)

=> \(A-1=\frac{-\left(m-1\right)^2}{m^2+2}\le0\forall m\)

=>\(A\le1\)

dấu = xảy ra khi zà chỉ khi m=1

19 tháng 3 2020

\(\hept{\begin{cases}mx+y=m\left(d1\right)\\x+my=1\left(d2\right)\end{cases}}\)

để hệ phương trình có nghiệm duy nhất thì d1  cắt d2

=> \(\frac{m}{1}\ne\frac{1}{m}=>m^2\ne1=>m\ne\pm1\)

19 tháng 3 2020

theo hệ thức vi ét ta có \(\hept{\begin{cases}x_1+x_2=5m-1\\x_1x_2=6m^2-2m\end{cases}}\)

do đs \(x_1^2+x_2^2=1\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2=1\Leftrightarrow\left(5m-1\right)^2-2\left(6m^2-2m\right)=1\)

=>\(25m^2-10m+1-12m^2+4m=1\)

=>\(13m^2-6m=0=>\orbr{\begin{cases}m=0\\13m-6=0\end{cases}=>\orbr{\begin{cases}m=0\\m=\frac{6}{13}\end{cases}}}\)

zậy m=0 h m=6/13 thì phương trình có hai nghiêm\(x_1,x_2\)thảo mãn \(x_1^2+x_2^2=1\)

19 tháng 3 2020

theo vi-et có 

\(x_1+x_2=m;x_1x_2=-2\)ta có:

\(x_1^2+x_2^2-3x_1x_2=14\Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2=14\)

\(=>m^2+10=14=>m^2=4=>m=\pm2\)

19 tháng 3 2020

gọi tử số của phân số cần tìm là a

mẫu số của phân số cần tìm là a+5

nêu thêm tử 17 đơn zị , mẫu 2 đơn zị thì ta có 

\(\frac{a+17}{a+7}\) 

theo đề bài t có phương trình

\(\frac{a+17}{a+7}=\frac{a+5}{a}\)\(\Leftrightarrow\)\(a\left(a+17\right)=\left(a+5\right)\left(a+7\right)\Leftrightarrow a^2+17a=a^2+7a+5a+35\)

=>\(5a=35=>a=7\)

phâ số cần tìm là \(\frac{7}{12}\)

23 tháng 3 2020

a)\(B=\left(\frac{3}{x-1}+\frac{1}{\sqrt{x}+1}\right):\frac{1}{\sqrt{x}+1}\)

\(B=\left(\frac{3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{1}{\sqrt{x}+1}\right)\times\left(\sqrt{x}+1\right)\)

\(B=\frac{3+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\times\left(\sqrt{x}+1\right)\)

\(B=\frac{2+\sqrt{x}}{\sqrt{x}-1}\)