K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3

2, Liên xếp mỗi bộ bàn ghế bằng giấy trong:

\(24:3=8\) (phút)

Thời gian làm một cái bàn là:

\(\left(8-1\right):2=3,5\) (phút)

Thời gian làm một cái ghế là:

\(8-3,5=4,5\) (phút)

ĐS: ... 

1: Thời gian nấu ăn là:

18h27p-17h12p=1h15p=1,25(giờ)

19 giờ kém 8 phút=18h52p

Thời gian ăn là:

18h52p-18h27p=25p=5/12(giờ)

Thời gian nấu ăn nhiều hơn thời gian ăn:

\(1.25:\dfrac{5}{12}=\dfrac{5}{4}\cdot\dfrac{12}{5}=3\left(lần\right)\)

NV
6 tháng 3

Tổng của 4 số ban đầu là:

\(120\times4=480\)

Tổng của 5 số là:

\(125\times5=625\)

Số thứ 5 là:

\(625-480=145\)

6 tháng 3

300cm2= 3dm2

5000cm2= 50dm2

300dm2= 3m2

7dm2 60cm2= 760cm2

29dm2= 2900cm2

125cm2= 1dm2 25cm2

6870cm2= 68dm2 70cm2

1 dm2 = 100 cm2

1 cm2 = 0.01 dm2

1m2 = 100dm2

 

 

 

NV
6 tháng 3

\(A=1+6^2+6^4+...+6^{2022}+6^{2024}\)

\(6^2.A=6^2+6^4+6^6+...+6^{2024}+6^{2026}\)

\(\Rightarrow6^2A-A=6^{2026}-1\)

\(\Rightarrow35A=6^{2026}-1\)

\(\Rightarrow A=\dfrac{6^{2026}-1}{35}\)

6 tháng 3

1 m² = 100 dm²

6 tháng 3

14 dm² = 1400 cm²

NV
6 tháng 3

Nếu p lẻ \(\Rightarrow9p^3-23\ge9.3^3-23>2\)

\(9p^3\) lẻ và 23 lẻ \(\Rightarrow q=9p^3-23\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (ktm)

\(\Rightarrow p\) chẵn \(\Rightarrow p=2\)

\(\Rightarrow q=9.2^3-23=49\) không phải số nguyên tố (ktm)

Vậy không tồn tại p, q nguyên tố thỏa mãn yêu cầu

6 tháng 3

viết nhầm thông cảm

 

6 tháng 3

2/9 - 7/8 : x = 1

7/8 : x = 2/9 - 1

7/8 : x = -7/9

x = 7/8 : (-7/9)

x = -9/8

6 tháng 3

Diện tích hình chữ nhật là:

\(16\times24=384\left(m^2\right)\)

Diện tích hình tam giác vuông là:
\(\dfrac{1}{2}\times16\times12=96\left(m^2\right)\)

Diện tích của cả hình là:

\(384+96=480\left(m^2\right)\)

ĐS: ... 

NV
6 tháng 3

a.

Xét hai tam giác AHB và CAB có:

\(\left\{{}\begin{matrix}\widehat{B}-chung\\\widehat{AHB}=\widehat{CAB}=90^0\end{matrix}\right.\)

\(\Rightarrow\Delta AHB\sim\Delta CAB\left(g.g\right)\)

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{BH}{AB}\Rightarrow AB^2=BH.BC\)

b.

Do H là trung điểm BM, trong tam giác ABM có AH vừa là đường cao đồng thời là trung tuyến

\(\Rightarrow\Delta ABM\) cân tại A \(\Rightarrow\widehat{ABH}=\widehat{AMH}\)

Mà \(\widehat{AMH}=\widehat{CMK}\) (đối đỉnh)

\(\Rightarrow\widehat{ABH}=\widehat{CMK}\)

Xét hai tam giác ABH và CMK có:

\(\left\{{}\begin{matrix}\widehat{ABH}=\widehat{CMK}\left(cmt\right)\\\widehat{AHB}=\widehat{CKM}=90^0\end{matrix}\right.\)

\(\Rightarrow\Delta ABH\sim\Delta CMK\left(g.g\right)\)

c.

Xét hai tam giác AMH và CMK có:

\(\left\{{}\begin{matrix}\widehat{AHM}=\widehat{CKM}=90^0\\\widehat{AMH}=\widehat{CMK}\left(\text{đối đỉnh}\right)\end{matrix}\right.\) 

\(\Rightarrow\Delta AMH\sim\Delta CMK\left(g.g\right)\Rightarrow\dfrac{AM}{CM}=\dfrac{MH}{MK}\)

\(\Rightarrow\dfrac{AM}{MH}=\dfrac{CM}{MK}\)

Xét hai tam giác AMC và HMK có:

\(\left\{{}\begin{matrix}\dfrac{AM}{MH}=\dfrac{CM}{MK}\left(cmt\right)\\\widehat{AMC}=\widehat{HMK}\left(\text{đối đỉnh}\right)\end{matrix}\right.\)  

\(\Rightarrow\Delta AMC\sim\Delta HMK\left(c.g.c\right)\)

\(\Rightarrow\dfrac{AM}{MH}=\dfrac{AC}{HK}\Rightarrow MH.AC=AM.HK\)

Mà H là trung điểm BM \(\Rightarrow MH=\dfrac{1}{2}BM\)

\(\Rightarrow\dfrac{1}{2}BM.AC=AM.HK\Rightarrow BM.AC=2AM.HK\)

NV
6 tháng 3

d.

Từ câu c, do \(\Delta AMC\sim \Delta HMK\Rightarrow \widehat{ACM}=\widehat{HKM}\)

Mà \(\left\{{}\begin{matrix}\widehat{ACM}+\widehat{CAI}=90^0\\\widehat{HKM}+\widehat{HKI}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{CAI}=\widehat{HKI}\)

Xét hai tam giác CAI và HKI có:

\(\left\{{}\begin{matrix}\widehat{I}-chung\\\widehat{CAI}=\widehat{HKI}\end{matrix}\right.\) \(\Rightarrow\Delta CAI\sim\Delta HKI\left(g.g\right)\)

\(\Rightarrow\dfrac{CI}{HI}=\dfrac{AI}{KI}\Rightarrow KI.CI=HI.AI\)

Ta có:

\(AC^2=AK^2+KC^2=AI^2-IK^2+KC^2\)

\(=AI\left(AH+HI\right)-IK^2+KC^2\)\(=AH.AI+AI.HI-IK^2+KC^2\)

\(=AH.AI+KI.CI-IK^2+KC^2=AH.AI+KI\left(CI-IK\right)+KC^2\)

\(=AH.AI+KI.CK+KC^2=AH.AI+CK.\left(KI+CK\right)\)

\(=AH.AI+CK.CI\) (đpcm)