\(\hept{\begin{cases}x+my=m+1\\mx+y=3m-1\end{cases}}\)(m là tham số)
a) Tìm m để hpt trên có nghiệm
b) Tìm m để hpt trên có nghiệm duy nhất thỏa mãn 2x-y=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi đề đúng không vậy? a, b, c còn điều kiện nào không?
đặt \(\hept{\begin{cases}x=\frac{a+b}{a-b}\\y=\frac{b+c}{b-c}\\z=\frac{c+a}{c-a}\end{cases}}\)thì xy+yz+zx=-1
xét (x+1)(y+1)(z+1)=\(\left(\frac{a+b}{a-b}+1\right)\left(\frac{b+c}{b-c}+1\right)\left(\frac{c+a}{c-a}+1\right)=\frac{8abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
và \(\left(x-1\right)\left(y-1\right)\left(z-1\right)=\frac{8abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
\(\Rightarrow xy+yz+zx=-1\)
Lại có: \(\left(x+y+z\right)^2\ge0\Rightarrow x^2+y^2+z^2\ge-2\left(xy+yz+zx\right)\)
Do đó: \(\left(\frac{a+b}{a-b}\right)^2+\left(\frac{b+c}{b-c}\right)^2+\left(\frac{c+a}{c-a}\right)^2\ge2\)
\(\Rightarrow\left(\frac{a+b}{a-b}\right)^2-1+\left(\frac{b+c}{b-c}\right)^2-1+\left(\frac{c+a}{c-a}\right)^2+1\ge2-3\)
\(\Rightarrow\frac{4ab}{\left(a-b\right)^2}+\frac{4bc}{\left(b-c\right)^2}+\frac{4ac}{\left(c-a\right)}\ge-1\)
sử dụng phương pháp cộng đại số ta có:
mx+5x+3y+mx+2y=-3
\(\Leftrightarrow\)2mx+5x+3y
\(\Leftrightarrow\)2mx+5x+5y+3=0
\(\Leftrightarrow\)x(2m+5)=-5y-3
ta biện luận hpt trên:
+Với m\(\ne\)\(\frac{-5}{2}\)rút x từ hpt ta đc x=\(\frac{1-3y}{m+5}\)
thay vào pt2 ta đc y=\(\frac{5m+20}{m-10}\)\(\Rightarrow\)
x=\(\frac{15m+59}{\left(10-m\right)\left(m+5\right)}\)(đây là n0 duy nhất của hpt)
+Với m=\(\frac{-5}{2}\)hpt có vô số nghiệm (x;\(\frac{-3}{5}\))
Vậy.......
mik sorry . mik ko biết