K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2020

Để tìm Max N, ta có thể tìm Min của \(\frac{1}{N}(ĐK: x>0)\)

Theo đó, ta có: \(\frac{1}{N}=\frac{2x-4\sqrt{x}+3}{x}=2-\frac{4}{\sqrt{x}}+\frac{3}{x}=(\sqrt{\frac{3}{x}})^2-2.\sqrt{\frac{3}{x}}.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{2}{3}=(\sqrt{\frac{3}{x}}-\frac{2}{\sqrt{3}})^2+\frac{2}{3} \geq \frac{2}{3} \forall x \)

Vậy \(\frac{1}{N} \geq \frac{2}{3} \Rightarrow N \leq \frac{3}{2}\)

Dấu "=" xảy ra <=> \(\sqrt{\frac{3}{x}}-\frac{2}{\sqrt{3}}=0 \iff x=\frac{9}{4}(TMĐKXĐ)\)

Vậy  \(MaxN=\frac{3}{2} \iff x= \frac{9}{4}\)

Chúc bạn học tốt!

3 tháng 4 2020

pt vó nghiệm kép tương đương đen ta phẩy =0

tức (m-1)^2-(m-1)=0

m^2-2m+1-m+1=0

m^2-3m+2=0

m=1 hoặc m=2

 
3 tháng 4 2020

phương trình vô nghiệm kép tương đương đen phảy = 0 

tức ( m - 1 ) ^ 2 - ( m - 1 ) = 0

m^2 - 2 m + 1 - m + 1 = 0 

m ^2 - 3m + 2 = 0

m = 1 hoặc m = 2

a) trên cùng 1 nửa mặt phẳng bờ chứa tia Ox có

\(xOy< xOz\)(zì 60 độ < 120 độ )

nên Oy nằm giữa 2 tia Ox zà Oz

zì Oy nằm giữa 2 tia Ox zà Oz nên

\(xOy+yOz=xOz=>60^0+yOz=120^0=>yOz=60^0\)

zì tia Oy nằm giữa 2 tia Oz , Ox

zà xOy=yOz(=60 độ )

nên Oy laftia phân giác

b) zì mOz zà xOz kề bù nên

mOz+xOz=180 dộ

mOz+120 độ =180 độ

mOz=60 đọ

zì tia On là tia ohana giác của mOz nên nOz =30 độ

có nOz+yOz=60 độ +30 độ =90 độ

Kết luận : nOz zà yOz phụ nhau

6 tháng 4 2020
Phụ nhau
6 tháng 4 2020

khó thế

13 tháng 4 2020

Mình làm được rồi nha

 
4 tháng 4 2020

\(\sqrt{75}-\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(\Leftrightarrow\)\(5\sqrt{3}-\left(2-\sqrt{3}\right)\)

\(\Leftrightarrow\)\(5\sqrt{3}-\sqrt{3}+2\)

\(\Leftrightarrow\)\(4\sqrt{3}+2\)

4 tháng 4 2020

\(\Leftrightarrow\sqrt{75}-\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(\Leftrightarrow5\sqrt{3}-\left(2-\sqrt{3}\right)\)

\(\Leftrightarrow5\sqrt{3}-2+\sqrt{3}\)

\(\Leftrightarrow6\sqrt{3}-2\)

k cho mk nha

mình nghxi đề là thế này mới đúng ( sai thì mình ko biết )

\(\hept{\begin{cases}x^2+xy+y^2=1\\x-y-xy=3\end{cases}}\)

bài làm

Nhận xét rằng hệ trên zốn ko đối xứng

Đặt t=-y ta đc

\(\hept{\begin{cases}x^2-tx+t^2=1\\x+t+xt=-2\end{cases}}\)

đặt 

\(\hept{\begin{cases}x+t=S\\xt=P\end{cases}\left(ĐK;S^2-4P\ge0\right)}\)

hệ được chuyển zề dạng

\(\hept{\begin{cases}S^2-3P=1\\S+P=3\end{cases}=>S^2+3S-10=0=>\orbr{\begin{cases}S=-5\\S=2\end{cases}}}\)

\(=>\hept{\begin{cases}S=-5\\P=8\end{cases}\left(loại\right)hoặc\hept{\begin{cases}S=2\\P=1\end{cases}\left(nhận\right)\Leftrightarrow}\hept{\begin{cases}x+1=2\\xt=1\end{cases}}}\)

khi đó x,t là nghiệm của phương trình

\(z^2-2z+1=0=>z=1=>x=t=1=>x=1;y=-1\)

zậy có nghiemj duy nhất là (1;-1)

3 tháng 4 2020

\(\frac{x}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-6\right)^2}{\sqrt{x}-3}+12\ge12\)

3 tháng 4 2020

không biết có đúng không nhưng vẫn liều :))

M = \(\frac{x}{\sqrt{x}-3}\)

M -2 =\(\frac{x}{\sqrt{x}-3}-2\)

\(M-2=\frac{x-2\sqrt{x}+6}{\sqrt{x}-3}\)

\(M-2=\frac{x-2\sqrt{x}+4+2}{\sqrt{x}+3}\)

\(M-2=\frac{\left(\sqrt{x}-2\right)^2+2}{\sqrt{x}+3}\)

mà \(\left(\sqrt{x}-2\right)^2+2>=2\)

do x > 9 => \(\sqrt{x}-3>0\)

=> M-2 >= 2

M>= 4

=> Giá trị nhỏ nhất của M là 4

4 tháng 4 2020

Vì DI = DB (gt) nên tam giác DIB cân tại D

Suy ra: \(\widehat{DIB}=\widehat{DBI}\) =>  \(\widehat{BAD}+\widehat{ABI}=\widehat{IBC}+\widehat{DBC}\)

Mà AD là phân giác góc BAC nên cung BD = cung CD

Ta có: BAD là góc nội tiếp chắn cung BD

           DBC là góc nội tiếp chắn cung CD

Do đó: \(\widehat{BAD}=\widehat{DBC}\Rightarrow\widehat{ABI}=\widehat{IBC}\)

=> BI là phân giác của góc ABC

Lại có: AI là phân giác góc BAC

Vậy I là tâm đường tròn nội tiếp tam giác ABC (Đpcm)

18 tháng 4 2021

AOB=60 độ ( OA=OB=AB=R -> OAB là tam giác đều)

3 tháng 4 2020

ý C phải ko

4 tháng 4 2020

ý c phải ko