\(\dfrac{x-4}{\sqrt{x}-1}\)
Tìm giá trị của x để A = 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Từ $a+b> c\Rightarrow a+b-c>0$ (cái này hiển nhiên)
Từ $|a-b|< c\Leftrightarrow |a-b|^2< c^2$
$\Leftrightarrow (a-b)^2< c^2$
$\Leftrightarrow (a-b-c)(a-b+c)<0$
Với $c>0$ thì $a-b-c< a-b+c$ nên để tích âm thì $a-b-c<0< a-b+c$
Hay $a-b-c<0$ và $a-b+c>0$
Bài 1:
$\sqrt{x-4}-2$
ĐKXĐ: $x\geq 4$
Ta thấy $\sqrt{x-4}\geq 0$ với mọi $x\geq 4$
$\Rightarrow \sqrt{x-4}-2\geq 0-2=-2$
Vậy gtnn của biểu thức là $-2$. Giá trị này đạt được tại $x-4=0$
$\Leftrightarrow x=4$
Bài 2: $x-\sqrt{x}$
ĐKXĐ: $x\geq 0$
$x-\sqrt{x}=(x-\sqrt{x}+\frac{1}{4})-\frac{1}{4}=(\sqrt{x}-\frac{1}{2})^2-\frac{1}{4}$
$\geq 0-\frac{1}{4}=\frac{-1}{4}$
Vậy gtnn của biểu thức là $\frac{-1}{4}$. Giá trị này đạt được khi $\sqrt{x}-\frac{1}{2}=0$
$\Leftrightarrow x=\frac{1}{4}$
Lời giải:
CM $\sqrt{a}+\sqrt{b}> \sqrt{a+b}$
BĐT cần chứng minh tương đương với:
$(\sqrt{a}+\sqrt{b})^2> a+b$
$\Leftrightarrow a+b+2\sqrt{ab}> a+b$
$\Leftrightarrow \sqrt{ab}>0$ (luôn đúng với mọi $a>0, b>0$)
Ta có đpcm
--------------------
CM $|a|+|b|> |a+b|$. Cái này là = rồi chứ không phải > bạn nhé.
Khi $a>0; b>0$ thì $|a|=a; |b|=b\Rightarrow |a|+|b|=a+b$
$|a+b|=a+b$
$\Rightarrow |a|+|b|=|a+b|$
Lời giải:
ĐKXĐ: $x\geq 0$
$-\sqrt{x}(\sqrt{x}-1)>0$
$\Leftrightarrow \sqrt{x}(\sqrt{x}-1)<0$
\(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} \sqrt{x}>0\\ \sqrt{x}-1<0\end{matrix}\right.\\ \left\{\begin{matrix} \sqrt{x}<0\\ \sqrt{x}-1>0\end{matrix}\right. (\text{TH này hiển nhiên vô lý})\end{matrix}\right. \)
\(\Leftrightarrow \left\{\begin{matrix} x>0\\ 0\leq x< 1\end{matrix}\right.\Leftrightarrow 0< x< 1\)
Lời giải:
ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow (x^2-4x+4)+\sqrt{x-2}=0$
$\Leftrightarrow (x-2)^2+\sqrt{x-2}=0$
Vì $(x-2)^2\geq 0; \sqrt{x-2}\geq 0$ với mọi $x\geq 2$
Do đó để tổng của chúng bằng $0$ thì:
$(x-2)^2=\sqrt{x-2}=0$
$\Leftrightarrow x=2$ (tm)
chân thang cần đặt cách chân tường 1 đoạn là:6*cos65=2.54 cm
\(A=4\\ \Rightarrow\dfrac{x-4}{\sqrt{x}-1}=4\\ \Leftrightarrow4\left(\sqrt{x}-1\right)=x-4\\ \Leftrightarrow4\sqrt{x}-4=x-4\\ \Leftrightarrow4\sqrt{x}-x=4-4\\ \Leftrightarrow4\sqrt{x}-x=0\\ \Leftrightarrow\sqrt{x}\left(4-\sqrt{x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)
Vậy \(x=0\) hoặc \(x=16\) thì A = 4
Minh chỉ biết kết quả chính xác thôi.
\(\left[{}\begin{matrix}x=0\\x=\dfrac{\sqrt{17}}{2}\end{matrix}\right.\)