Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (g.g) suy ra hay (1)
Chứng minh tương tự:
(g.g) suy ra hay (2)
Mà (g.g) suy ra hay (3)
Từ (1), (2) và (3) ta có suy ra .
b) Vì suy ra
Trong tam giác vuông tại nên
Trong tam giác vuông tại có suy ra .
Do đó, (c.g.c).
suy ra .
Vậy cm.
Gọi cắt tại , cắt tại , và cắt tại .
có // suy ra (1)
có // suy ra (2)
Từ (1) và (2) suy ra hay (*)
Tương tự có // suy ra (3)
có // suy ra (4)
Từ (3) và (4) ta có hay (**)
Từ (*) và (**) ta có .
Mà (gt) suy ra
Mặt khác (gt) nên cân
Suy ra
Vậy (c.g.c)
Suy ra .
a) có // suy ra (1)
có // suy ra (2)
Từ (1) và (2) ta có nên .
b) Từ suy ra
có // suy ra
(3)
Tương tự có // suy ra
(4)
Khi đó .
c) Ta có suy ra và .
Suy ra
Nhân theo vế ta được không đổi.
a) có // suy ra (1)
có // suy ra (2)
Từ (1) và (2) ta có nên .
b) Từ suy ra
có // suy ra
(3)
Tương tự có // suy ra
(4)
Khi đó .
c) Ta có suy ra và .
Suy ra
Nhân theo vế ta được không đổi.
a) có // suy ra (1)
có // suy ra (2)
Từ (1) và (2) ta có nên .
b) Từ suy ra
có // suy ra
(3)
Tương tự có // suy ra
(4)
Khi đó .
c) Ta có suy ra và .
Suy ra
Nhân theo vế ta được không đổi.
a) có // suy ra (1)
có // suy ra (2)
Từ (1) và (2) ta có nên .
b) Từ suy ra
có // suy ra
(3)
Tương tự có // suy ra
(4)
Khi đó .
c) Ta có suy ra và .
Suy ra
Nhân theo vế ta được không đổi.
Qua vẽ đường thẳng song song với cắt tại và cắt tại .
Khi đó
có // suy ra (1)
có // suy ra (2)
Từ (1) và (2) ta có (*)
Chứng minh tương tự ta cũng có:
có // suy ra (3)
có // suy ra (4)
Từ (3) và (4) ta có (**)
Từ (*) và (**) ta có (đpcm).
Qua vẽ đường thẳng song song với cắt tại và cắt tại .
Khi đó
có // suy ra (1)
có // suy ra (2)
Từ (1) và (2) ta có (*)
Chứng minh tương tự ta cũng có:
có // suy ra (3)
có // suy ra (4)
Từ (3) và (4) ta có (**)
Từ (*) và (**) ta có (đpcm).
a) ta có E là trung điểm của AB và EF // BC
=> F là trung điểm của AC
=> EF là đường trung bình của tam giác ABC
b) xét tứ giác ADCP có
FA = FC (câu a)
FD = FP (giả thiết)
=> tứ giác ADCP là hình bình hành
c) vì AD là đường phân giác của ΔABC nên ta có:
\(\dfrac{BD}{CD}=\dfrac{AB}{AC}\Leftrightarrow\dfrac{BD}{CD}=\dfrac{2EA}{2FC}\Leftrightarrow\dfrac{BD}{CD}=\dfrac{EA}{FC}\\ \Rightarrow BD.FC=EA.CD\)
a) \(x^4+4x^2+4=\left(x^2\right)^2+2.x^2.2+2^2\\ =\left(x^2+2\right)^2\)
b) \(9x^4+24x^2y^2+16y^4=\left(3x^2\right)^2+2.3x^2.4y^2+\left(4y^2\right)^2\\ =\left(3x^2+4y^2\right)^2\)
c) \(27x^3+27x^2+3x+1=\left(3x\right)^3+3.\left(3x\right)^2.1+3.3x.1^2+1^3\\ =\left(3x+1\right)^3\)
d) \(x^3-3x^2+3x-1=x^3-3.x^2.1+3.x.1^2-1^3\\ =\left(x-1\right)^3\)
\(a,x^4+4x^2+4=\left(x^2\right)^2+2.x^2.2+2^2=\left(x^2+2\right)^2\\ b,9x^4+24x^2y^2+16y^4=\left(3x^2\right)^2+2.3x^2.4y^2+\left(4y^2\right)^2=\left(3x^2+4y^2\right)^2\\ d,x^3-3x^2+3x-1=\left(x-1\right)^3\)
Em xem lại câu c
Bạn cần hỗ trợ bài nào nhỉ?