Một tam giác có chiều cao băng \(\frac{3}{4}\)cạnh đáy. Nếu chiều cao tăng thêm 3dm và cạnh đáy giảm đi 2dm thì diện tích tam giác tăng thêm 12\(dm^2\). Tính chiều cao và cạnh đáy của tam giác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đây là 1 bài tương tự! bn tham khảo thôi nha!k cho mình nhé!
Ta có : \(\frac{a}{1+9b^2}=\frac{a+9ab^2-9ab^2}{1+9b^2}=a-\frac{9ab^2}{1+9b^2}\ge a-\frac{9ab^2}{6b}=a-\frac{3ab}{2}\)
Tương tự : \(\frac{b}{1+9c^2}\ge b-\frac{3bc}{2}\); \(\frac{c}{1+9a^2}\ge c-\frac{3ac}{2}\)
\(\Rightarrow Q\ge a+b+c-\frac{3ab+3bc+3ac}{2}\ge a+b+c-\frac{3.\frac{\left(a+b+c\right)^2}{3}}{2}=1-\frac{1}{2}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Ta có: \(Q=\frac{a}{1+9b^2}+\frac{b}{1+9c^2}+\frac{c}{9a^2}=\frac{a+9ab^2-9ab^2}{1+9b^2}+\frac{b+9bc^2-9bc^2}{1+9b^2}+\frac{c+9ca^2-9ca^2}{1+9c^2}\)
\(=1-\frac{9ab^2}{1+9b^2}+b-\frac{9bc^2}{1+9c^2}+c-\frac{9ca^2}{1+9a^2}=1-\left(\frac{9ab^2}{1+9b^2}+\frac{9bc^2}{1+9c^2}+\frac{9ca^2}{1+9a^2}\right)\)
Áp dụng BĐT AM-GM ta có:
\(\frac{9ab^2}{1+9b^2}\le\frac{9ab^2}{2\sqrt{1\cdot9b^2}}=\frac{9ab^2}{2\cdot3b}=\frac{3ab}{2}\)
Tương tự ta có: \(\hept{\begin{cases}\frac{9bc^2}{1+9c^2}\le\frac{3ab}{2}\\\frac{9ca^2}{1+9a^2}\le\frac{3ab}{2}\end{cases}}\)
\(\Rightarrow\frac{9ab^2}{1+9b^2}+\frac{9bc^2}{1+9c^2}+\frac{9ac^2}{1+9a^2}\le\frac{3\left(ab+bc+ca\right)}{2}\le\frac{\left(a+b+c\right)^2}{2}=\frac{1}{2}\)
Hay \(Q=1-\left(\frac{9ab^2}{1+9b^2}+\frac{9bc^2}{1+9c^2}+\frac{9ca^2}{1+9a^2}\right)\ge1-\frac{1}{2}=\frac{1}{2}\)
Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{3}\)
Vậy \(Min_P=\frac{1}{2}\)đạt được khi \(a=b=c=\frac{1}{3}\)
Vì P đi qua điểm A
Thay vèo ta cóa \(-1=a.4\Rightarrow a=-\frac{1}{4}\)
Ý b thiếu dữ kiện à bn ơi ?
Ta có \(\sqrt{x+3}-2+\sqrt{y+3}-2=0\)
\(\frac{x-1}{\sqrt{x+3}+2}+\frac{y-1}{\sqrt{y+3}+2}=0\) (1)
Và \(\sqrt{x}-1+\sqrt{y}-1=0\)
\(\Leftrightarrow\frac{x-1}{\sqrt{x}+1}+\frac{y-1}{\sqrt{y}+1}=0\) (2)
Từ 1 và 2 => x=1 và y=1
OLM mới bổ sung chức năng tạo video tương tác xem hướng dẫn ở đây
a) Nối CE, CF
Xét \(\Delta CEK\) và \(\Delta CFK\) có:
\(\widehat{ECK}\)= \(\widehat{CFK}\) (vì cùng chắn \(\widebat{CE}\))
\(\widehat{CKF}\) chung
\(\Rightarrow\)\(\Delta EKC~\Delta CKF\left(g.g\right)\)
\(\Rightarrow\frac{EK}{CK}=\frac{CK}{FK}\)
\(\Rightarrow CK^2=EK.FK\)(1)
Vì \(\Delta COK\)vuông tại C, \(CM\perp OK\)
\(\Rightarrow CK^2=MK.OK\)(2)
Từ (1), (2) \(\Rightarrow EK.FK=MK.OK\)
\(\Rightarrow\frac{EK}{MK}=\frac{OK}{FK}\)
Xét \(\Delta MEK\)và \(\Delta KOF\)có:
\(\widehat{MKE}\)chung
\(\frac{EK}{MK}=\frac{OK}{FK}\)
\(\Rightarrow\Delta MEK~\Delta FOK\left(c.g.c\right)\)
\(\Rightarrow\widehat{OFE}=\widehat{EMK}\)
\(\Rightarrow\)Tứ giác EMOF nội tiếp