K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2020
Tui nè 21\11\2k7
16 tháng 12 2020
Kết bạn nhé
15 tháng 12 2020

a, \(\frac{5}{2}x^2y^2+15x^2y-30xy^2=5xy\left(\frac{1}{2}xy+3x-6y\right)\)

b, \(16x^2+24x-8xy-6y+y^2\)

\(=\left(16x^2-8xy+y^2\right)+\left(24x-6y\right)=\left(4x-y\right)^2+6\left(4x-y\right)\)

\(=\left(4x-y\right)\left[\left(4x-y\right)+6\right]=\left(4x-y\right)\left(4x-y+6\right)\)

c, \(2x^2-5x-7=2x^2-7x+2x-7\)

\(=2x\left(x+1\right)-7\left(x+1\right)=\left(2x-7\right)\left(x+1\right)\)

15 tháng 12 2020

Bai lam 

\(4\left(x^2-2\right)=0\Leftrightarrow x^2-2=0\)

\(\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)

29 tháng 11 2021
Cau tra loi la gi a
15 tháng 12 2020

\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)

\(=a\left(b^3-c^3\right)+b\left(c^3-b^3+b^3-a^3\right)+c\left(a^3-b^3\right)\)

\(=a\left(b^3-c^3\right)+b\left(c^3-b^3\right)+b\left(b^3-a^3\right)+c\left(a^3-b^3\right)\)

\(=a\left(b^3-c^3\right)-b\left(b^3-c^3\right)-b\left(a^3-b^3\right)+c\left(a^3-b^3\right)\)

\(=\left(b^3-c^3\right)\left(a-b\right)-\left(a^3-b^3\right)\left(b-c\right)\)

\(=\left(b-c\right)\left(b^2+bc+c^2\right)\left(a-b\right)-\left(a-b\right)\left(a^2+ab+b^2\right)\left(b-c\right)\)

\(=\left(b-c\right)\left(a-b\right)\left(b^2+bc+c^2-a^2-ab-b^2\right)\)

\(=\left(b-c\right)\left(a-b\right)\left(bc+c^2-a^2-ab\right)\)

\(=\left(b-c\right)\left(a-b\right)\left[\left(c-a\right)\left(c+a\right)+b\left(c-a\right)\right]\)

\(=\left(b-c\right)\left(a-b\right)\left(c-a\right)\left(a+b+c\right)\)

DD
15 tháng 12 2020

\(\hept{\begin{cases}f\left(x\right)=x^4+6x^2+25⋮P\left(x\right)\\g\left(x\right)=3x^4+4x^2+28x+5⋮P\left(x\right)\end{cases}}\)

\(\Rightarrow3f\left(x\right)-g\left(x\right)=3\left(x^4+6x^2+25\right)-\left(3x^4+4x^2+28x+5\right)=14\left(x^2-2x+5\right)⋮P\left(x\right)\)

\(\Rightarrow P\left(x\right)=x^2-2x+5\)

Thử lại: \(f\left(x\right)=\left(x^2+2x+5\right)\left(x^2-2x+5\right)⋮P\left(x\right)\)

              \(g\left(x\right)=\left(3x^2+6x+1\right)\left(x^2-2x+5\right)⋮P\left(x\right)\)

do đó \(P\left(x\right)=x^2-2x+5\)thỏa mãn. 

\(P\left(-2\right)=\left(-2\right)^2-2.\left(-2\right)+5=13\)