Có 5 nhà toán học nam, 3 nhà toán học nữ và 4 nhà vật lý nam. Lập một đoàn công tác có 3 người cần có cả nam và nữ, cần có cả nhà toán học và nhà vật lý. Hỏi có bao nhiêu cách?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thi đánh giá năng lực
Một số tự nhiên ¯¯¯¯¯¯¯¯¯¯¯¯¯abcdeabcde¯ có 5 chữ số chia hết cho 3 khi tổng các chữ số của nó chia hết cho 3.
Nhận thấy một số tự nhiên thoả yêu cầu sẽ không đồng thời có mặt các chữ số 0 và 3.
Do đó ta chia làm 2 trường hợp:
TH1: ¯¯¯¯¯¯¯¯¯¯¯¯¯abcdeabcde¯ không có chữ số 0.
Khi đó 5 chữ số còn lại có tổng của chúng chia hết cho 3, nên số số tự nhiên thoả mãn là 5! số.
TH2: ¯¯¯¯¯¯¯¯¯¯¯¯¯abcdeabcde¯ không có chữ số 3 (khi đó ta còn 5 chữ số là 0; 1; 2; 4; 5 có tổng của chúng chia hết cho 3).
Suy ra trường hợp này ta có 4.4!4.4! số.
Vậy theo quy tắc cộng ta có tất cả 5!+4.4!=2165!+4.4!=216 số .
\(iz=3+2i\Leftrightarrow z=\frac{3+2i}{i}=\frac{3i+2i.i}{i^2}=2-3i\)
\(\Rightarrow\overline{z}=2+3i\)
bằng222222222222222222222222222222222222222222222222222222
có 5 cách nha bạn
th1: chọn 1 nhà toán học nam, 1 nhà toán học nữ, 1 nhà vật lý nam
có: 5.3.4 = 60 (cách chọn)
th2: chọn 2 nhà toán học nữ, 1 nhà vật lý nam
có: 3C2.4C1 = 12 (cách chọn)
th3: chọn 1 nhà toán học nữ, 2 nhà vật lý nam
có: 3C1.4C2 = 18 (cách chọn)
vậy có tổng cộng 60 + 12 + 18 = 90 cách chọn